154k views
18 votes
Solve for x: x/2x+3 + 2x+3/x = 184/65​

2 Answers

5 votes

Answer:

x/2x+3 + 2x +3/x = 184 /65

x(2x + 3)–1 + (2x+3)x-1 = 184/65

(2x + 3)x / (2x +3)x = 184/65

2x² + 3x / 2x² + 3x = 184/65

1x= 184/64

x = 184/64

User Omarion
by
7.6k points
3 votes

Explanation:

Given that: {x/(2x+3)} + {(2x+3)/x} = 184/65

⇛[{(x*x) + (2x+3)(2x+3)}/{(x)(2x+3)}] = 184/65

⇛[{x² + 2x(2x+3) + 3(2x+3)}/(2x²+3x)] = 184/65

⇛[{x² + 4x² + 6x + 6x + 9}/(2x²+3x)] = 184/65

⇛[{x² + 4x² + 12x + 9}/(2x² + 3x)] = 184/65

⇛{(5x² + 12x + 9)/(2x² + 3x)} = 184/65

On applying cross multiplication then

⇛184(2x² + 3x) = 65(5x² + 12x + 9)

Multiply the number outside of the brackets with numbers and variables in the brackets on LHS and RHS.

⇛388x² + 582x = 325x² + 780x + 584

⇛388x² + 582x -325x² - 780x - 584 = 0

⇛388x²-325x² + 582x-780x - 584 = 0

⇛63x² - 198x - 584 = 0

⇛8(7x² - 22x - 65) = 0

⇛7x² - 22x - 65 = 0

Now,

This is of the form ax² + bx + c = 0, Where, a = 7, b = -22 and c = -65

Using the quadratic formula x = [{-b±√(b²-4ac)}/2a] , we get

x = [{-(-22)±√(-22)² - 4(7)(-65)}/{2(7)]

x = [{-(-22)±√(-22*-22) - 4(7)(-65)}/{2(7)]

x = [{22 ± √(484 + 1820)}/14]

x = [{22 ± √(2304)}/14]

x = {(22 ± 48)/14}

x = {(22 + 48)/14} or {(22 - 48)/14}

x = (70/14) or (-26/14)

x = 5 or x = -13/7

Therefore, x = 5 or -13/7

Answer: Hence, the value of x for the given equation is 5 or -13/7.

Please let me know if you have any other questions.

User Federico Giust
by
7.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.