Explanation:
Given that: {x/(2x+3)} + {(2x+3)/x} = 184/65
⇛[{(x*x) + (2x+3)(2x+3)}/{(x)(2x+3)}] = 184/65
⇛[{x² + 2x(2x+3) + 3(2x+3)}/(2x²+3x)] = 184/65
⇛[{x² + 4x² + 6x + 6x + 9}/(2x²+3x)] = 184/65
⇛[{x² + 4x² + 12x + 9}/(2x² + 3x)] = 184/65
⇛{(5x² + 12x + 9)/(2x² + 3x)} = 184/65
On applying cross multiplication then
⇛184(2x² + 3x) = 65(5x² + 12x + 9)
Multiply the number outside of the brackets with numbers and variables in the brackets on LHS and RHS.
⇛388x² + 582x = 325x² + 780x + 584
⇛388x² + 582x -325x² - 780x - 584 = 0
⇛388x²-325x² + 582x-780x - 584 = 0
⇛63x² - 198x - 584 = 0
⇛8(7x² - 22x - 65) = 0
⇛7x² - 22x - 65 = 0
Now,
This is of the form ax² + bx + c = 0, Where, a = 7, b = -22 and c = -65
Using the quadratic formula x = [{-b±√(b²-4ac)}/2a] , we get
x = [{-(-22)±√(-22)² - 4(7)(-65)}/{2(7)]
x = [{-(-22)±√(-22*-22) - 4(7)(-65)}/{2(7)]
x = [{22 ± √(484 + 1820)}/14]
x = [{22 ± √(2304)}/14]
x = {(22 ± 48)/14}
x = {(22 + 48)/14} or {(22 - 48)/14}
x = (70/14) or (-26/14)
x = 5 or x = -13/7
Therefore, x = 5 or -13/7
Answer: Hence, the value of x for the given equation is 5 or -13/7.
Please let me know if you have any other questions.