92.2k views
2 votes
A line passes through the two points P(5,5) and Q(-1,-1). write the equation in slope-intercept form

User STerrier
by
7.7k points

1 Answer

7 votes

Final answer:

To write the equation in slope-intercept form, we need to find the slope and the y-intercept. Using the given points P(5,5) and Q(-1,-1), the slope is 1 and the y-intercept is 0. Therefore, the equation of the line is y = x.

Step-by-step explanation:

To write the equation of a line in slope-intercept form (y = mx + b), we need to find the slope (m) and the y-intercept (b). The slope can be calculated using the formula: m = (y2 - y1) / (x2 - x1). Plugging in the values from the given points, P(5,5) and Q(-1,-1), we get: m = (-1 - 5) / (-1 - 5) = (-6) / (-6) = 1. The y-intercept can be found by substituting the slope and one of the points into the slope-intercept form and solving for b. Using point P(5,5), we have: 5 = (1)(5) + b, which simplifies to: 5 = 5 + b. Subtracting 5 from both sides, we get: b = 0. Therefore, the equation in slope-intercept form is: y = 1x + 0, which simplifies to: y = x.

User Ted Goas
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories