104k views
5 votes
Point P is the centroid of °LMN, QN=17 Find PN and QN.

Point P is the centroid of °LMN, QN=17 Find PN and QN.-example-1
User Allerin
by
7.9k points

1 Answer

2 votes

PN is 34 units long and QN is 17 units long.

To find the lengths of PN and QN, given that point P is the centroid of triangle LMN and QN is 17 units long, we can use the properties of a centroid in a triangle.

In a triangle with centroid as P, the centroid divides each median into segments where the ratio of the smaller segment to the larger segment is 2:1. This means that the segment from the centroid to the vertex is twice as long as the segment from the centroid to the midpoint of the opposite side.

Let's denote:

PN as x

QN as 17 units

Given that P is the centroid, PN to QN ratio is 2:1. So, we can set up an equation using this ratio:

QN/ PN​ = 1/ 2

Substitute the values:

17/ x​ = 1/ 2

​Cross-multiply:

2×17=x×1

x=34

Therefore, PN is 34 units long and QN is 17 units long.

User Bailey Miller
by
7.6k points

Related questions

asked Jun 16, 2024 159k views
Erick Fleming asked Jun 16, 2024
by Erick Fleming
7.7k points
1 answer
5 votes
159k views
asked Oct 3, 2024 127k views
Lumi Lu asked Oct 3, 2024
by Lumi Lu
7.5k points
1 answer
1 vote
127k views
asked Jul 15, 2024 51.1k views
Eugene Laminskiy asked Jul 15, 2024
by Eugene Laminskiy
8.8k points
1 answer
4 votes
51.1k views