cos4A-sin4A=2cos2A-1
proved below.
Explanation:
Given:
cos^4A-sin^4A=2cos^2A-1
LHS=cos^4A-sin^4A
=[cos^2A]^2-[sin^2A]^2
=[cos^2A+sin^2A][cos^2A-sin^2A]
=[1][cos^2A-(1-cos^2A)] [ cos^2A+sin^2A=1]
=[cos^2A-1+cos^2A]
=2cos^2A-1
=RHS.
3.6m questions
4.6m answers