200k views
10 votes
The total number of gallons of water in a tank at time t is modeled by the expression A(t)=30+8t-2/3(t+1)^3/2

User Jokarl
by
7.6k points

1 Answer

7 votes

Answer:

193 gallons

Explanation:

Given


A(t) = 30+8t-(2)/(3)(t+1)^{(3)/(2)}

Required

Determine the maximum amount of water the tank can hold --- Missing from the question

Start by differentiating A w.r.t t


A'(t) = 0 + 8 + (d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)}]

Solving:
(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)}


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(2)/(3)(d)/(dt)[(t+1)^{(3)/(2)}

Apply power rule:


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(2)/(3)[(3)/(2)(t + 1)^{(3)/(2)-1} * (d)/(dt)[t+1]


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(3)/(2)-1} * (d)/(dt)[t+1]


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(3)/(2)-1} * [1+0]


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(3)/(2)-1} * [1]


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(3)/(2)-1}


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(1)/(2)}

So:


A'(t) = 0 + 8 + (d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)}]

A'(t) = 0 + 8 + \frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}}]


A'(t) = 0 +8 -(t + 1)^{(1)/(2)}


A'(t) = 8 -(t + 1)^{(1)/(2)}

Equate to 0 to solve for t


A'(t) = 0


8 -(t + 1)^{(1)/(2)} = 0

Collect Like Term


-(t + 1)^{(1)/(2)} = -8

Square both sides


(-(t + 1)^{(1)/(2)})^2 = (-8)^2


t +1 = 64

Make t the subject:


t = 64 - 1


t = 63

So, the tank is at maximum when t = 63.

Substitute 63 for t in:
A(t) = 30+8t-(2)/(3)(t+1)^{(3)/(2)}


A(63) = 30+8*63-(2)/(3)(63+1)^{(3)/(2)}


A(63) = 30+8*63-(2)/(3)(64)^{(3)/(2)}


A(63) = 30+8*63-(2)/(3)*512}


A(63) = 30+8*63-(2*512)/(3)}


A(63) = 30+8*63-(1024)/(3)}


A(63) = 30+8*63-341.33


A(63) = 192.67

Approximate:


A(63) = 193

User Dykam
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories