Answer:
193 gallons
Explanation:
Given
![A(t) = 30+8t-(2)/(3)(t+1)^{(3)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/dipn41k6v363gc0v765lj53y201wfw742r.png)
Required
Determine the maximum amount of water the tank can hold --- Missing from the question
Start by differentiating A w.r.t t
![A'(t) = 0 + 8 + (d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)}]](https://img.qammunity.org/2022/formulas/mathematics/high-school/v14bf7a6sjfqkihg1vc4n0qair09i0qsm9.png)
Solving:
![(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/4d9xo77y24qvmglgichbhl4c334cjxu8ry.png)
![(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(2)/(3)(d)/(dt)[(t+1)^{(3)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/44loe0skxff8ux9rktc0g7pglqmjyqblez.png)
Apply power rule:
![(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(2)/(3)[(3)/(2)(t + 1)^{(3)/(2)-1} * (d)/(dt)[t+1]](https://img.qammunity.org/2022/formulas/mathematics/high-school/3sbzdnwwty3tg6y9vw87atex35rixrimp6.png)
![(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(3)/(2)-1} * (d)/(dt)[t+1]](https://img.qammunity.org/2022/formulas/mathematics/high-school/s1t527myzkx2xp6quq6ugpz0eagm1si4iq.png)
![(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(3)/(2)-1} * [1+0]](https://img.qammunity.org/2022/formulas/mathematics/high-school/b5fcrjqn8uw3pmsqzld1lkeojblv6e2zf5.png)
![(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(3)/(2)-1} * [1]](https://img.qammunity.org/2022/formulas/mathematics/high-school/pq55sfhsdupwagmge1zqrblp63oju2xx0u.png)
![(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(3)/(2)-1}](https://img.qammunity.org/2022/formulas/mathematics/high-school/n039vy2aqjko05h3elsqrjo7rhdmvm1eah.png)
![(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(1)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/sb58qex3olcm4q118h1batittxkolbzgqz.png)
So:
![A'(t) = 0 + 8 + (d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)}]](https://img.qammunity.org/2022/formulas/mathematics/high-school/v14bf7a6sjfqkihg1vc4n0qair09i0qsm9.png)
A'(t) = 0 + 8 + \frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}}]
![A'(t) = 0 +8 -(t + 1)^{(1)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/2sww2mvxd9qc5pa7107t2rratufromnv2i.png)
![A'(t) = 8 -(t + 1)^{(1)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/j6xfhfb7be2y1h5qyksw9dwc7r1vrzpp30.png)
Equate to 0 to solve for t
![A'(t) = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/rbx7d22a657a0x6rf3dunvzz5691ku5l7r.png)
![8 -(t + 1)^{(1)/(2)} = 0](https://img.qammunity.org/2022/formulas/mathematics/high-school/xuae886fl80xfxpotvuevelhhw03z9hokg.png)
Collect Like Term
![-(t + 1)^{(1)/(2)} = -8](https://img.qammunity.org/2022/formulas/mathematics/high-school/f24k66ru6i337ngsz2w7hso0madp2h4bux.png)
Square both sides
![(-(t + 1)^{(1)/(2)})^2 = (-8)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/1rkfzh16tuddhe554j61qnk2k91z2370b0.png)
![t +1 = 64](https://img.qammunity.org/2022/formulas/mathematics/high-school/9gbc42xfomcq29kqgzcd8nbhhg0qrgang0.png)
Make t the subject:
![t = 64 - 1](https://img.qammunity.org/2022/formulas/mathematics/high-school/ket17mcor822f7jkynp3wugoumi3cmuxei.png)
![t = 63](https://img.qammunity.org/2022/formulas/mathematics/high-school/qpurl0nj8kr9zhtfh177qt6c1xsueg3cid.png)
So, the tank is at maximum when t = 63.
Substitute 63 for t in:
![A(t) = 30+8t-(2)/(3)(t+1)^{(3)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/dipn41k6v363gc0v765lj53y201wfw742r.png)
![A(63) = 30+8*63-(2)/(3)(63+1)^{(3)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/t66e7hfia9zoxmg0azmkukjg5rdv4ca9m7.png)
![A(63) = 30+8*63-(2)/(3)(64)^{(3)/(2)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/1z8s3z9dja28oppmt1jznoacj3zq1ck4ym.png)
![A(63) = 30+8*63-(2)/(3)*512}](https://img.qammunity.org/2022/formulas/mathematics/high-school/ultmshxp03xiuit5quuwm0ovuaew9y8pcv.png)
![A(63) = 30+8*63-(2*512)/(3)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/tbg352nflfz40981j86by64tuq87dxhtcy.png)
![A(63) = 30+8*63-(1024)/(3)}](https://img.qammunity.org/2022/formulas/mathematics/high-school/7o1ag6lvdb5yfg8t88cgat08tn00tqkiao.png)
![A(63) = 30+8*63-341.33](https://img.qammunity.org/2022/formulas/mathematics/high-school/58yvas4im8ffc1jmkb1h2bepz5g0r3fjug.png)
![A(63) = 192.67](https://img.qammunity.org/2022/formulas/mathematics/high-school/ownn5j89xcf5b64y6r5m66w7766rqkag90.png)
Approximate:
![A(63) = 193](https://img.qammunity.org/2022/formulas/mathematics/high-school/4lcmmo0tzl3e8jm0z049mefc2tp3bifmna.png)