200k views
10 votes
The total number of gallons of water in a tank at time t is modeled by the expression A(t)=30+8t-2/3(t+1)^3/2

User Jokarl
by
3.6k points

1 Answer

7 votes

Answer:

193 gallons

Explanation:

Given


A(t) = 30+8t-(2)/(3)(t+1)^{(3)/(2)}

Required

Determine the maximum amount of water the tank can hold --- Missing from the question

Start by differentiating A w.r.t t


A'(t) = 0 + 8 + (d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)}]

Solving:
(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)}


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(2)/(3)(d)/(dt)[(t+1)^{(3)/(2)}

Apply power rule:


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(2)/(3)[(3)/(2)(t + 1)^{(3)/(2)-1} * (d)/(dt)[t+1]


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(3)/(2)-1} * (d)/(dt)[t+1]


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(3)/(2)-1} * [1+0]


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(3)/(2)-1} * [1]


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(3)/(2)-1}


(d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)} = -(t + 1)^{(1)/(2)}

So:


A'(t) = 0 + 8 + (d)/(dt)[-(2)/(3)(t+1)^{(3)/(2)}]

A'(t) = 0 + 8 + \frac{d}{dt}[-\frac{2}{3}(t+1)^{\frac{3}{2}}]


A'(t) = 0 +8 -(t + 1)^{(1)/(2)}


A'(t) = 8 -(t + 1)^{(1)/(2)}

Equate to 0 to solve for t


A'(t) = 0


8 -(t + 1)^{(1)/(2)} = 0

Collect Like Term


-(t + 1)^{(1)/(2)} = -8

Square both sides


(-(t + 1)^{(1)/(2)})^2 = (-8)^2


t +1 = 64

Make t the subject:


t = 64 - 1


t = 63

So, the tank is at maximum when t = 63.

Substitute 63 for t in:
A(t) = 30+8t-(2)/(3)(t+1)^{(3)/(2)}


A(63) = 30+8*63-(2)/(3)(63+1)^{(3)/(2)}


A(63) = 30+8*63-(2)/(3)(64)^{(3)/(2)}


A(63) = 30+8*63-(2)/(3)*512}


A(63) = 30+8*63-(2*512)/(3)}


A(63) = 30+8*63-(1024)/(3)}


A(63) = 30+8*63-341.33


A(63) = 192.67

Approximate:


A(63) = 193

User Dykam
by
4.2k points