Explanation:
First we must calculate the interquartile range (IQR), using this equation:
![IQR = Q_(3) - Q_(1)](https://img.qammunity.org/2022/formulas/mathematics/high-school/qww1of9a2uy479zzxrbgu7qfgiph932yj1.png)
Based on the information provided we fill in:
![IQR = 58 - 45](https://img.qammunity.org/2022/formulas/mathematics/high-school/igrjgkjxqzk9hq8ecjm384cailvq7nut1n.png)
![IQR = 13](https://img.qammunity.org/2022/formulas/mathematics/high-school/fra2l0i7rnrli7b73h14oumskuzff1cd3v.png)
In order to find what the range for the data set is we need to use the Interquartile Rule:
×
![IQR\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/my7p1l64bd94tj964pkpz2h8nwjhl4we4e.png)
×
![IQR\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/my7p1l64bd94tj964pkpz2h8nwjhl4we4e.png)
×
Now we plugin in:
![45 - 19.5 = 25.5\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/zvsu2c20ltn78hjrqea03yslq2o4gsfxvt.png)
![58 + 19.5 = 77.5](https://img.qammunity.org/2022/formulas/mathematics/high-school/h1rp7cs4addo1jbr8zff0jwbabgn31lu1h.png)
Any number below 25.5 is a possible outlier and any number above 77.5 is a possible outlier.
Answer:
Based on the results of the calculations, 25 could be a possible outlier in the data set.