36.4k views
4 votes
Which shows 532−472 being evaluated using the difference of squares method?

1. 532−472=2809−2209=600
2. 532−472=(53+47)(53−47)=(100)3. (6)=600
3. 532−472=(53−47)2=62=36
4. 532−472=(2809+2209)(2809−2209)=3,010,800

1 Answer

0 votes

Final answer:

The difference of squares method correctly computes 532−472 as (53+47)(53−47) = (100)(6) = 600.

Step-by-step explanation:

The correct way to evaluate 532−472 using the difference of squares method is:

532−472 = (53+47)(53−47) = (100)(6) = 600

The difference of squares is a mathematical technique that utilizes the formula (a+b)(a−b) = a2−b2, where a and b are any numbers. This method takes advantage of the fact that the sum and difference of the same two numbers form a pair of factors for the difference of their squares.

User Hedgesky
by
8.1k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.