57.3k views
1 vote
HELP IM STUCK!!! BEGGING.

In the figure below, (triangle) B C A ~ (triangle) S T R. Find cos T, sin T, and tan T. Round your answers to the nearest hundredth.

HELP IM STUCK!!! BEGGING. In the figure below, (triangle) B C A ~ (triangle) S T R-example-1

1 Answer

0 votes

Answer:

sin T = 0.76

cos T = 0.65

tan T = 1.17

Explanation:

In similar triangles, corresponding angles have the same measure, and corresponding sides are always in the same ratio.

If ΔBCA ~ ΔSTR, then m∠C = m∠T. Therefore:


\sin T = \sin C


\cos T = \cos C


\tan T = \tan C

To find the sine, cosine and tangent of an angle, we can use the trigonometric ratios:


\boxed{\begin{array}{l}\underline{\sf Trigonometric\;ratios}\\\\\sf \sin(\theta)=(O)/(H)\qquad\cos(\theta)=(A)/(H)\qquad\tan(\theta)=(O)/(A)\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$\theta$ is the angle.}\\\phantom{ww}\bullet\;\textsf{O is the side opposite the angle.}\\\phantom{ww}\bullet\;\textsf{A is the side adjacent the angle.}\\\phantom{ww}\bullet\;\textsf{H is the hypotenuse (the side opposite the right angle).}\end{array}}

In the case angle C of triangle BCA:

  • θ = C
  • O = BA = 18.3
  • A = CA = 15.7
  • H = BC = 24.1

Substitute these values into the trigonometric ratios:


\sin T=\sin C = (18.3)/(24.1)=0.7593360...=0.76


\cos T=\cos C = (15.7)/(24.1)=0.6514522...=0.65


\tan T=\tan C = (18.3)/(15.7)=1.1656050...=1.17

User Foebu
by
8.5k points