The approximate speed of the block when it reaches the bottom of the board is 8.28 m/s.
This can be solved using the equation for the conservation of energy which is:
![\[ PE_{\text{initial}} = KE_{\text{final}} + \text{Work against friction} \]](https://img.qammunity.org/2024/formulas/physics/college/3ysys0w965lk5vtqnh5v8jtqflr888tsgv.png)
From the top of the board that formed the incline, the potential energy of the block is given by the formula:
![\[ PE_{\text{initial}} = mgh \]](https://img.qammunity.org/2024/formulas/physics/college/suitkazaezdpipy10vru566plg4vxgqu44.png)
And at the bottom of the board that formed the incline, the kinetic energy of the block is given by:
![\[ KE_{\text{final}} = (1)/(2)mv^2 \]](https://img.qammunity.org/2024/formulas/physics/college/fxu8hk1r4afiom5f2wbn9vz1pplhpx79dl.png)
Next is the work done against friction, which is given by:
![\[ \text{Work against friction} = \mu_k mgh \]](https://img.qammunity.org/2024/formulas/physics/college/cqq6g8bf7wyy834qvctlswwa2ses3a3cww.png)
Setting up the equation and solving for v, we get:
![\[ mgh = (1)/(2)mv^2 + \mu_k mgh \]](https://img.qammunity.org/2024/formulas/physics/college/ccvsey3g4dkvuthrmjve3585vwcy55l5qo.png)
![\[ gh = (1)/(2)v^2 + \mu_k gh \]](https://img.qammunity.org/2024/formulas/physics/college/cw4l9mjwsk526m4n4pwov4ff3e2bt4uz36.png)
![\[ v^2 = 2gh - 2\mu_k gh \]](https://img.qammunity.org/2024/formulas/physics/college/m3jmt0yekt4601d9jdi2e6uh9r7xa567i1.png)
![\[ v = √(2gh(1 - \mu_k)) \]](https://img.qammunity.org/2024/formulas/physics/college/mioxm8txwrtxlcfme9doqjysmxbbroo2v8.png)
Next is to substitute all the values given in the problem to obtain v:
![\[ v = \sqrt{2 * 9.8 \, \text{m/s}^2 * 3.50 \, \text{m} * (1 - 0.400)} \]](https://img.qammunity.org/2024/formulas/physics/college/heodi3jvbq1nli2zvg5px4n3kodhddpjdo.png)
![\[ v \approx √(2 * 9.8 * 3.50 * 0.600) \]](https://img.qammunity.org/2024/formulas/physics/college/ylgnmlco04bspmu2ouz9n78t5rsddy0e3w.png)
![\[ v \approx √(68.6) \]](https://img.qammunity.org/2024/formulas/physics/college/gerjwu1dr7kvs4qzrn9m7xwrkh3flsf0p1.png)
![\[ v \approx 8.28 \, \text{m/s} \]](https://img.qammunity.org/2024/formulas/physics/college/zsub8sxg3tuzk6xo6yo27mxumbmvmcusav.png)
So, the approximate speed of the block when it reaches the bottom of the board is 8.28 m/s.