Answer:
Results are below.
Explanation:
1. First, we need to calculate the Future Value:
FV= {A*[(1+i)^n-1]}/i
A= quarterly deposit
n= 10*4= 40
i= 0.12/4= 0.03
FV= {4,000*[(1.03^40) - 1]} / 0.03
FV= $301,605.04
Now, the present value:
PV= FV/(1+i)^N
PV= 301,605.04/(1.03^40)
PV= $92,459.09
2. First, we need to calculate the value of the first year of college:
FV= PV*(1+i)^n
FV= 24,000*(1.04^3)
FV= $26,996.74
Now, the quarterly payments:
FV= {A*[(1+i)^n-1]}/i
A= quarterly deposit
Isolating A:
A= (FV*i)/{[(1+i)^n]-1}
i= 0.08/4= 0.02
n= 3*4= 12
A= (26,996.74*0.02) / [(1.02^12) - 1]
A= $2,012.87