After a 270° clockwise rotation about the origin, the vertices of the figure with original coordinates P(-3, 4), Q(-1, 4), R(-2, 1), and S(-4,1) become P'(4, 3), Q'(4, 1), R'(1, 2), and S'(1, 4).
To rotate a point (x, y) counterclockwise about the origin by θ, the new coordinates (x', y') can be found using the formulas:
![\[ x' = x \cos(\theta) - y \sin(\theta) \]\[ y' = x \sin(\theta) + y \cos(\theta) \]](https://img.qammunity.org/2024/formulas/mathematics/college/mrcfstguqd9t9ygh7ht0kmapdafrv0vwe8.png)
For a 270° clockwise rotation, the formulas become:
![\[ x' = x \cos(270^\circ) - y \sin(270^\circ) \]\[ y' = x \sin(270^\circ) + y \cos(270^\circ) \]](https://img.qammunity.org/2024/formulas/mathematics/college/o3i8j2ij5x7j6tit8swthmsog9v6pqeh0x.png)
Simplify using trigonometric values:
x' = -y
y' = x
Now, apply these formulas to each vertex of the figure:
1. For P(-3, 4): P' = (4, 3)
2. For Q(-1, 4): Q' = (4, 1)
3. For R(-2, 1): R' = (1, 2)
4. For S(-4, 1): S' = (1, 4)
After a 270° clockwise rotation, the new coordinates are: P'(4, 3), Q'(4, 1), R'(1, 2), S'(1, 4)