400,730 views
39 votes
39 votes
50PTS!!!!

A golf ball is hit at a velocity of 42.0 m/s at an angle of 42.2° on Earth and on the Moon where the acceleration due to gravity is 1.62 m/s². How much higher will the maximum height be on the Moon compared to the maximum height on Earth?

User Jankapunkt
by
3.0k points

1 Answer

11 votes
11 votes

Answer:

Approximately
205\; {\rm m} (assuming that
g = 9.81\; {\rm m\cdot s^(-2)} on Earth and that air resistance is negligible.)

Step-by-step explanation:

Initial vertical velocity of the golf ball:


\begin{aligned} & (\text{initial vertical velocity}) \\ =\; & (\text{initial velocity})\, \sin(\text{angle of elevation}) \\ =\; & (42.0\; {\rm m\cdot s^(-1)}})\, \sin(42.2^(\circ)) \\ \approx\; & 28.212\; {\rm m\cdot s^(-1)}\end{aligned}.

Let
u_(y) denote the initial vertical of the ball. When the ball is at maximum height, the vertical velocity
v_(y) of the ball will be
0. Let
x_(y) denote the vertical displacement of the ball (height of the ball.)

Let
a_(y) denote the vertical acceleration of the ball. Under the assumptions, the vertical acceleration of the ball during the flight will be constantly
(-g).

The SUVAT equation
v^(2) - u^(2) = 2\, a\, x relates these quantities. Rearrange this equation to find the maximum vertical displacement of the ball (value of
x_(y) when
v_(y) = 0\; {\rm m\cdot s^(-1)}.)


{v_(y)}^(2) - {u_(y)^(2) = 2\, a_(y)\, x_(y).


\begin{aligned}x_(y) &= \frac{{v_(y)}^(2) - {u_(y)}^(2)}{2\, a_(y)} \end{aligned}.

On the Earth,
a_(y) = (-g) = (-9.81)\; {\rm m\cdot s^(-2)}. Therefore:


\begin{aligned}x_(y) &= \frac{{v_(y)}^(2) - {u_(y)}^(2)}{2\, a_(y)} \\ &\approx \frac{(0\; {\rm m\cdot s^(-1)})^(2) - (28.212\; {\rm m\cdot s^(-1)})^(2)}{2\, ((-9.81)\; {\rm m\cdot s^(-2)})} \\ &\approx 40.57\; {\rm m}\end{aligned}.

On the Moon, it is given that
g = 1.62\; {\rm m\cdot s^(-2)}, such that
a_(y) = (-g) = (-1.62)\; {\rm m\cdot s^(-2)}. Therefore:


\begin{aligned}x_(y) &= \frac{{v_(y)}^(2) - {u_(y)}^(2)}{2\, a_(y)} \\ &\approx \frac{(0\; {\rm m\cdot s^(-1)})^(2) - (28.212\; {\rm m\cdot s^(-1)})^(2)}{2\, ((-1.62)\; {\rm m\cdot s^(-2)})} \\ &\approx 245.65\; {\rm m}\end{aligned}.

The difference between the maximum heights will be approximately:


(245.65\; {\rm m}) - (40.57\; {\rm m}) \approx 205\; {\rm m}.