Final answer:
Not possible partial products for 24 x 69 are products that don't result from the standard multiplication process of corresponding places. Examples include 300, 400, and 1800, as these do not match any legitimate step in multiplying 24 by 69.
Step-by-step explanation:
To find not possible partial products for 24 x 69, we need to look at the multiplication process. When we multiply two numbers, we usually multiply each digit of the first number by each digit of the second number and then add those products together to find the total product. For example, in 24 x 69:
- Multiply the ones place in each number: 4 x 9 = 36
- Multiply the tens place of the second number by the ones place of the first number: 6 x 4 = 24 (remember we're dealing with 60 x 4 here, so this is actually 240)
- Multiply the ones place of the first number by the tens place of the second number: 4 x 60 = 240
- Multiply the tens place in each number: 20 x 60 = 1200
The partial products we actually get are 36, 240, 240, and 1200. Any partial product that doesn't correspond to multiplying the places in this manner would be not possible. For instance:
- 300 is not a possible partial product because there's no combination of tens and ones places that would give this result in the multiplication of 24 by 69.
- 400 is not a partial product because no single-digit multiplication involving 2 or 4 and 6 or 9 results in 400.
- 1800 is not a possible partial product as it exceeds the largest possible single step product of 20 x 60 = 1200.
Therefore, 300, 400, and 1800 are examples of not possible partial products for 24 x 69.
.