The
integral has a calculated value of 5.276
How to evaluate the integral
From the question, we have the following parameters that can be used in our computation:
![\int\limits^3_0 {[(\sqrt 2)^x]} \, dx](https://img.qammunity.org/2024/formulas/mathematics/high-school/oxhscytatqtq77kge63xsza67wcw9xgl6w.png)
This can be expressed as
![\int\limits^3_0 {[(\sqrt 2)^x]} \, dx = \int\limits^3_0 {[2^\frac x2]} \, dx](https://img.qammunity.org/2024/formulas/mathematics/high-school/hpd6vtudvd9dy98mevz7k8isti377i0l1c.png)
Let u = x/2
So, we have
du = dx/2
And as such
dx = 2 du
By substitution, we have
![\int\limits^3_0 {[(\sqrt 2)^x]} \, dx = \int\limits^3_0 {[2^u]} \, 2 * du](https://img.qammunity.org/2024/formulas/mathematics/high-school/2yi6nw4mckbrg0f66orem45ry81bwfpr1j.png)
Factor out 2
![\int\limits^3_0 {[(\sqrt 2)^x]} \, dx = 2\int\limits^3_0 {[2^u]} \, du](https://img.qammunity.org/2024/formulas/mathematics/high-school/6pz2brecdmtdy101juay0ddf1198iz4jxh.png)
Applying the exponential rule of integration, we have
![\int\limits^3_0 {[(\sqrt 2)^x]} \, dx = (2* 2^u)/(\ln(2)) \limits^3_0](https://img.qammunity.org/2024/formulas/mathematics/high-school/n5x6ieepia96yrp7ifsby9ytbrk192u90m.png)
Recall that
u = x/2
So, we have
![\int\limits^3_0 {[(\sqrt 2)^x]} \, dx = (2* 2^\frac x2)/(\ln(2)) \limits^3_0](https://img.qammunity.org/2024/formulas/mathematics/high-school/2r0a862wscyw4q1uv2vv39ml7vgf1f94h4.png)
Expand
![\int\limits^3_0 {[(\sqrt 2)^x]} \, dx = (2* 2^\frac 32)/(\ln(2)) - (2* 2^\frac 02)/(\ln(2))](https://img.qammunity.org/2024/formulas/mathematics/high-school/whxb9r0e4sfoglgivi14wtwmujdevas59d.png)
This gives
![\int\limits^3_0 {[(\sqrt 2)^x]} \, dx = (2^\frac 52)/(\ln(2)) - (2)/(\ln(2))](https://img.qammunity.org/2024/formulas/mathematics/high-school/av04k578fy9869a7xd89hakmu6026bm6cq.png)
This gives
![\int\limits^3_0 {[(\sqrt 2)^x]} \, dx = (2^\frac 52 - 2)/(\ln(2))](https://img.qammunity.org/2024/formulas/mathematics/high-school/lqsb9cr7leb82vffy0tzu9cibeiq2zo556.png)
Evaluate
![\int\limits^3_0 {[(\sqrt 2)^x]} \, dx = 5.276](https://img.qammunity.org/2024/formulas/mathematics/high-school/7s0p2uozyymeisww4r2do3thivyvbhwibf.png)
Hence, the integral has a value of 5.276