223k views
1 vote
Solve (2cos² y - sin y - 1 = 0) for (0ᶜirc leq y leq 360ᶜirc).

a) (y = 150ᶜirc)
b) (y = 210ᶜirc)
c) (y = 30ᶜirc)
d) (y = 330ᶜirc)

1 Answer

3 votes

Final answer:

To solve the equation (2cos² y - sin y - 1 = 0), rearrange the equation and use the quadratic formula. Substitute sin y with t and solve the quadratic equation for t. Find the value of y using sin y = t.

Step-by-step explanation:

To solve the equation (2cos² y - sin y - 1 = 0), we can use the quadratic formula. Let's rearrange the equation:

2cos² y - sin y - 1 = 0

2(1 - sin² y) - sin y - 1 = 0

2 - 2sin² y - sin y - 1 = 0

-2sin² y - sin y + 1 = 0

To solve this quadratic equation, we can substitute sin y with t. Let:

t = sin y

-2t² - t + 1 = 0

Now we can solve this quadratic equation for t. Once we find the value of t, we can find the value of y using sin y = t.

By using the quadratic formula:

t = (-b ± sqrt(b² - 4ac)) / 2a

We get two values for t, which correspond to two possible values of y. From the given options, (b) y = 210° and (d) y = 330° satisfy the original equation. Therefore, the correct answers are (b) and (d).

User Gardelin
by
8.3k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories