Final answer:
To solve the equation (2cos² y - sin y - 1 = 0), rearrange the equation and use the quadratic formula. Substitute sin y with t and solve the quadratic equation for t. Find the value of y using sin y = t.
Step-by-step explanation:
To solve the equation (2cos² y - sin y - 1 = 0), we can use the quadratic formula. Let's rearrange the equation:
2cos² y - sin y - 1 = 0
2(1 - sin² y) - sin y - 1 = 0
2 - 2sin² y - sin y - 1 = 0
-2sin² y - sin y + 1 = 0
To solve this quadratic equation, we can substitute sin y with t. Let:
t = sin y
-2t² - t + 1 = 0
Now we can solve this quadratic equation for t. Once we find the value of t, we can find the value of y using sin y = t.
By using the quadratic formula:
t = (-b ± sqrt(b² - 4ac)) / 2a
We get two values for t, which correspond to two possible values of y. From the given options, (b) y = 210° and (d) y = 330° satisfy the original equation. Therefore, the correct answers are (b) and (d).