151k views
14 votes
Show that x²/√x²+4 is continuous at x=2​

1 Answer

9 votes

Answer:


\lim_(x \to 2) (x^(2) )/(x^(2) +4) = (1)/(2) = f(C)

The function f(x) is continuous

Explanation:

Explanation:-

Given that the function


f(x) = (x^(2) )/(x^(2) +4)

put x = c =2


f(c) = f(2) = ((2)^(2) )/((2)^(2) +4) = (4)/(8) = (1)/(2)


\lim_(x \to 2) (x^(2) )/(x^(2) +4) = (2^(2) )/(2^(2) +4) = (4)/(4+4) = (4)/(8)


\lim_(x \to 2) (x^(2) )/(x^(2) +4) = (1)/(2)


\lim_(x \to 2) (x^(2) )/(x^(2) +4) = (1)/(2) = f(C)

Given function f(x) is continuous

User Gunay Abdullayeva
by
4.6k points