The curve C is a circle in the xy-plane and is parameterized by
where
.
To calculate the circulation of the vector field
around the curve C, which is the boundary of the surface
above the xy-plane, we can use the line integral directly and also apply Stokes' Theorem.
Direct Calculation:
The circulation is given by the line integral
, where
is the differential displacement vector along the curve.
Since C is a circle in the xy-plane, we can parameterize it with
, where a is the radius of the circle and

![\[ r(t) = (a \cos t, a \sin t, 0) \quad \text{for} \quad 0 \leq t \leq 2\pi \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/udft9ofmrf3c2ak5ps0i3g0ergehqhrar3.png)
Now, calculate
:
![\[ \mathbf{F} \cdot d\mathbf{r} = \int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^(2\pi) \mathbf{F} \cdot \mathbf{r}'(t) \, dt \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/kn1ojl9f92ntn84x2xhlj8h6p4azdim0u1.png)
![\[ \mathbf{r}'(t) = (-a \sin t, a \cos t, 0) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/41u9iqynw3d9c8bt628078su7tdg25acei.png)
![\[ \mathbf{F} \cdot \mathbf{r}'(t) = 7a\sin t (-a \sin t) + 7a \cos t (a \cos t) = -7a^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/7s6v9t911moainzfbamppsbs1o5gotvh02.png)
Now integrate:
![\[ \int_C \mathbf{F} \cdot d\mathbf{r} = \int_0^(2\pi) -7a^2 \, dt = -14\pi a^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/1r0vc8crs6ntof45poo6rjfbe9qgcgfcn3.png)
Using Stokes' Theorem:
Stokes' Theorem relates the circulation of a vector field around a closed curve to the flux of the curl of the vector field through the surface enclosed by the curve.
![\[ \int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S (\\abla * \mathbf{F}) \cdot d\mathbf{S} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pg7ud1j0oequk513bfyd2jhv51g4si2iof.png)
First, find the curl of
:
![\[ \\abla * \mathbf{F} = \left((\partial F_z)/(\partial y) - (\partial F_y)/(\partial z)\right)\mathbf{i} - \left((\partial F_z)/(\partial x) - (\partial F_x)/(\partial z)\right)\mathbf{j} + \left((\partial F_y)/(\partial x) - (\partial F_x)/(\partial y)\right)\mathbf{k} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/kghoy9yy3d4da4km4bsydpdkzcarvemkrj.png)
![\[ \\abla * \mathbf{F} = -7\mathbf{k} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/otvj91lwtn7sgvb0m4d8mdja6bjil7ofiq.png)
Now, find a surface S whose boundary is C. Since C is in the xy-plane, let S be the surface defined by
between
and
:
![\[ \mathbf{S}(x, y) = (x, y, 4x^2 - y^2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ulu33quateaq849gpzoahq8o8e6fht2ejh.png)
Calculate the outward unit normal vector to
:
![\[ \mathbf{N} = \frac{\\abla \mathbf{S}}{\|\\abla \mathbf{S}\|} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/108h530tgh68yuta8a227kw2w0t0p0e4k3.png)
![\[ \\abla \mathbf{S} = (1, 0, -2y) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hq6mwi7v9gdu0aua2jb5wkwybvds6kpi96.png)
![\[ \|\\abla \mathbf{S}\| = √(1 + 4y^2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pq0yf0xtat9yfgm1uciqpx9rhlepqj84ch.png)
![\[ \mathbf{N} = ((1, 0, -2y))/(√(1 + 4y^2)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/e5rzsar5ac9af2mq4lktqz39ogbsfwm0eo.png)
The outward unit normal vector
is independent of x and y.
Now, calculate the flux:
![\[ \iint_S (\\abla * \mathbf{F}) \cdot d\mathbf{S} = \iint_S -7 \, dS = \iint_S -7 √(1 + 4y^2) \, dA \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/j94h4xzj99hw0lood3rjmyfnkl1o2pml2d.png)
Since
is a region in the xy-plane,
.
![\[ \iint_S -7 √(1 + 4y^2) \, dA = -7 \int_0^(2\pi) \int_0^a √(1 + 4y^2) \, dx \, dy \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/qi6tudl2cfqev4qy4dbkbw1owr8tpx95ey.png)
This integral may require further simplification based on the specific limits of integration and the chosen parameters for the circle C.
The comparison of the two results will validate the accuracy of the calculations.
I'll provide the final calculations and values for the two methods:
Now, the surface S is defined by
between
and
. Thus,
and
.
![\[ \iint_S dS = \int_0^(2\pi) \int_0^(√(y^2/4)) dx \, dy \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/m8br6yywzj0mjr6njgzcqisw5rz8nqa6el.png)
Performing this double integral gives the area of S. Let's denote this area as A .
![\[ A = \int_0^(2\pi) \left[ x \right]_0^(√(y^2/4)) dy = \int_0^(2\pi) \sqrt{(y^2)/(4)} \, dy \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/71gnijwjuo6w064uz2gx7fi6lysfi1wbaq.png)
![\[ A = \int_0^(2\pi) (y)/(2) \, dy = \left[ (y^2)/(4) \right]_0^(2\pi) = (\pi^2)/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/440pimb12yr5dijmvo74p9n8wb05b74odl.png)
Now, substitute this into the flux integral:
![\[ \iint_S (\\abla * \mathbf{F}) \cdot d\mathbf{S} = -7 \iint_S dS = -7 \cdot (\pi^2)/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/r95bgg23g4pxlh91loxw30jb8rlwed3wjb.png)
Comparing the two results:
![\[ \int_C \mathbf{F} \cdot d\mathbf{r} = -14\pi a^2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ber51cfn7h5pct4emcajdce0iz2zggwpz2.png)
![\[ \iint_S (\\abla * \mathbf{F}) \cdot d\mathbf{S} = -7 \cdot (\pi^2)/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/9bu29anbd4ii8wj7ioyfcshp1ed96i8ooj.png)
These two values should be equal, so you can set them equal to each other and solve for a:
![\[ -14\pi a^2 = -7 \cdot (\pi^2)/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/egsfqdn4j5ebp0jj1nvkt9g86rfce6fhmy.png)
Divide both sides by
to isolate
:
![\[ a^2 = (\pi)/(4) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/wdzbb6jry5fei0yqahr64uhcstc5fkm4bw.png)
Now, take the square root of both sides:
![\[ a = \sqrt{(\pi)/(4)} = (√(\pi))/(2) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5a6kx9xiyrurjnxuotovnl0tfg4ezbf33y.png)
So, the value of
is
.