Final answer:
The exact values of sin(2u), cos(2u), and tan(2u) are -96/125, -33/25, and 288/165, respectively.
Step-by-step explanation:
To find the exact values of sin(2u), cos(2u), and tan(2u) using the double-angle formulas, we need to use the given conditions sin(u) = -4/5 and 3/2 < u < 2.
The double-angle formulas are:
- sin(2u) = 2sin(u)cos(u)
- cos(2u) = cos²(u) - sin²(u)
- tan(2u) = sin(2u) / cos(2u)
Substituting sin(u) = -4/5 into the double-angle formulas, we can calculate:
- sin(2u) = 2(-4/5)(√(1 - (-4/5)²)) = -96/125
- cos(2u) = (√(1 - (-4/5)²))² - (-4/5)² = -33/25
- tan(2u) = -96/125 / (-33/25) = 288/165