Final answer:
The equation for a graph shifted 3 units to the right is y = 2(x - 3) + 7. The equation for a graph reflected, shifted to the left two units, and shifted up four units is y = -2 |x + 2| + 9. The equation for a reflected and steeper graph is y = -3x - 7.
Step-by-step explanation:
Part A. To shift a graph 3 units to the right, we subtract 3 from x inside the equation. Therefore, the equation would be y = 2(x - 3) + 7, which simplifies to y = 2x - 6 + 7.
Part B. To reflect the graph, we negate the entire equation. To shift the graph 2 units to the left, we change the sign of x. To shift it up 4 units, we add 4 to y. Therefore, the equation would be y = -2 |x + 2| + 9.
Part C. To reflect the graph, we negate the coefficient of x. To make it steeper, we increase the coefficient of x. Therefore, the equation would be y = -3x - 7.