175k views
22 votes
Does anyone know how to solve this?

Does anyone know how to solve this?-example-1
User Starla
by
8.0k points

1 Answer

8 votes

Answer:

A point in polar coordinates is written as (R, θ)

If we want to transform this point to rectangular coordinates, we get:

x = R*cos(θ)

y = R*sin(θ)

Now we can remember that the sine and cosine functions have a period of 2*pi, then:

cos(θ) = cos(θ + 2*pi)

or:

cos(θ) = cos(θ + 2*pi + 2*pi)

and so on.

Then the point (R, θ) is the same as (R, θ + 2*pi) and (R, θ + k*(2*pi))

where k can be any integer number.

Then if we have a point in polar coordinates:

(-4, -5*π/3)

Then another two polar representations of this point are:

(-4, -5*π/3 + 2*π) = (-4, -5*π/3 + 6*π/3) = (-4, π/3)

Now we can not add 2*π (nor subtract) because we would have an angle outside the range [-2*π, 2*π]

For example, if we have:

(-4, π/3 + 2*π) = (-4, 7*π/3)

And we can not change the value of the radius and get the coordinates for the same point.

So another representation could be something like:

(-8/2, π/3)

Where i just wrote -4 in another way.

Now, a really important point.

When working with polar coordinates, we always use R as a positive number (here you can see that R is negative) so this is not the standard notation for the polar representation of a point.

User Kinga
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories