391,267 views
37 votes
37 votes
State the value of


\tan(60°) + \cot(60°)
rationalise the denominator if needed !

thankyou ~​

User Jar
by
2.5k points

2 Answers

9 votes
9 votes

Answer:


tan(60)+cot60)\\√(3) +(1)/(√(3) ) \\(3+1)/(√(3) ) \\(4)/(√(3) ) *(√(3) )/(√(3) ) \\(4√(3) )/(3)

Hope it will help you a lot.

Explanation:

User Marshall An
by
2.8k points
19 votes
19 votes

Answer:


(4\sqrt3)/(3)

Explanation:


\pink{\frak{Given }}\Bigg\{ \sf \tan(60^o) + \cot(60^o)

And we need to find out the value of given expression . As we know that the value of ,


\sf \longrightarrow tan 60^o = \sqrt3

And ,


\sf \longrightarrow cot 60^o = (1)/(tan60^o)=(1)/(\sqrt3)

Substituting the values in the given expression ,


\sf \longrightarrow tan 60^o + cot 60^o\\


\sf \longrightarrow \sqrt3 +(1)/(\sqrt3)\\

Take LCM as √3 and simplify ,


\sf \longrightarrow ((\sqrt3)(\sqrt3) +1)/(\sqrt3)\\

Simplify ,


\sf \longrightarrow (3+1)/(\sqrt3)=(4)/(\sqrt3)

Rationalize the denominator by multiplying numerator and denominator by √3 .


\sf \longrightarrow ((4)(\sqrt3))/((\sqrt3)(\sqrt3))

Simplify by multiplying ,


\sf \longrightarrow \boxed{\bf (4\sqrt3)/(3)}

User Brouxhaha
by
3.1k points