The question is incomplete. The complete question is :
Let X be a random variable with probability mass function
P(X =1) =1/2, P(X=2)=1/3, P(X=5)=1/6
(a) Find a function g such that E[g(X)]=1/3 ln(2) + 1/6 ln(5). You answer should give at least the values g(k) for all possible values of k of X, but you can also specify g on a larger set if possible.
(b) Let t be some real number. Find a function g such that E[g(X)] =1/2 e^t + 2/3 e^(2t) + 5/6 e^(5t)
Solution :
Given :
![$P(X=1)=(1)/(2), P(X=2)=(1)/(3), P(X=5)=(1)/(6)$](https://img.qammunity.org/2022/formulas/mathematics/college/xohapl8mwbb1wx0o9uugx6bdg69h1plmjz.png)
a). We know :
![$E[g(x)] = \sum g(x)p(x)$](https://img.qammunity.org/2022/formulas/mathematics/college/2s0drfk4clggttrzw67r9ygnm3hgyj8zta.png)
So,
![$g(1).P(X=1) + g(2).P(X=2)+g(5).P(X=5) = (1)/(3) \ln (2) + (1)/(6) \ln(5)$](https://img.qammunity.org/2022/formulas/mathematics/college/dnlqm3r9lvo3zd2d6ctx1j8v9z70l6evud.png)
![$g(1).(1)/(2) + g(2).(1)/(3)+g(5).(1)/(6) = (1)/(3) \ln (2) + (1)/(6) \ln (5)$](https://img.qammunity.org/2022/formulas/mathematics/college/smpbzrzc4e0yb40mem71lg82iscepy5ne7.png)
Therefore comparing both the sides,
![$g(2) = \ln (2), g(5) = \ln(5), g(1) = 0 = \ln(1)$](https://img.qammunity.org/2022/formulas/mathematics/college/tq6vertfw4zmimaiea25k4qry3xabtfmea.png)
![$g(X) = \ln(x)$](https://img.qammunity.org/2022/formulas/mathematics/college/63so5b4nmoljt1kgm3kc3etzhx6g209ssp.png)
Also,
![$g(1) =\ln(1)=0, g(2)= \ln(2) = 0.6931, g(5) = \ln(5) = 1.6094$](https://img.qammunity.org/2022/formulas/mathematics/college/9dqsyw27trarvn7blnbg8e3aza0gh4fx1u.png)
b).
We known that
![$E[g(x)] = \sum g(x)p(x)$](https://img.qammunity.org/2022/formulas/mathematics/college/2s0drfk4clggttrzw67r9ygnm3hgyj8zta.png)
∴
![$g(1).P(X=1) +g(2).P(X=2)+g(5).P(X=5) = (1)/(2)e^t+ (2)/(3)e^(2t)+ (5)/(6)e^(5t)$](https://img.qammunity.org/2022/formulas/mathematics/college/exv9znkmx89u2i9u45jfej4013g1yj1tli.png)
![$g(1).(1)/(2) +g(2).(1)/(3)+g(5).(1)/(6 )= (1)/(2)e^t+ (2)/(3)e^(2t)+ (5)/(6)e^(5t)$$](https://img.qammunity.org/2022/formulas/mathematics/college/8dr55a5i9ayc2nl87mxg12l7lda01noic8.png)
Therefore on comparing, we get
![$g(1)=e^t, g(2)=2e^(2t), g(5)=5e^(5t)$](https://img.qammunity.org/2022/formulas/mathematics/college/ai79cp6bxs3sndbedk3kau908pwf7fbd38.png)
∴
![$g(X) = xe^(tx)$](https://img.qammunity.org/2022/formulas/mathematics/college/4gtnn320mxz81uanim8pp2lemejblt0tdz.png)