Answer:
![P(X <1.96) = 0.975](https://img.qammunity.org/2022/formulas/mathematics/college/rm7ufwuv7uqeb215w3543i2p9i0db4d5jf.png)
![P(X >1.64) = 0.0505](https://img.qammunity.org/2022/formulas/mathematics/college/1w9792b8qauibds7d2angsxfa2edcc05jz.png)
![P(0.5 < X < 0.5) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/zvbn43kknnd5fntk3ewq6thkwgu17w0qgd.png)
Explanation:
Given
--- Mean
--- Variance
Calculate the standard deviation
![\sigma^2 = 1](https://img.qammunity.org/2022/formulas/mathematics/college/7t0ezukd14ga7a0786sjtrwn2plb7c59oa.png)
![\sigma = 1](https://img.qammunity.org/2022/formulas/mathematics/college/zy9t4jttcyq3lihla8905tvlxm07fi0u8n.png)
Solving (a): P(X < 1.96)
First, we calculate the z score using:
![z = (X - \bar x)/(\sigma)](https://img.qammunity.org/2022/formulas/mathematics/college/khii7oe88f0wadblscpqih54uzp256kh6i.png)
This gives:
![z = (1.96 - 0)/(1)](https://img.qammunity.org/2022/formulas/mathematics/college/cet1rc8or018r4o9mf3og11s7xn54r1wtz.png)
![z = (1.96)/(1)](https://img.qammunity.org/2022/formulas/mathematics/college/7sg8kk4o0ygjctmk6fegp18rgouafwpapz.png)
![z = 1.96](https://img.qammunity.org/2022/formulas/mathematics/college/k5fz9g4jpabq9v07fdn80ug6eqrfq4iypw.png)
The probability is then solved using:
![(X < 1.96) = P(z <1.96)](https://img.qammunity.org/2022/formulas/mathematics/college/684ebn2lv92sqrt82fxeu5agdmc4x3dfsk.png)
From the standard normal distribution table
![P(z <1.96) = 0.97500](https://img.qammunity.org/2022/formulas/mathematics/college/jaw0z5ug78n85gbj420rfwtjxnkb86isef.png)
So:
![P(X <1.96) = 0.975](https://img.qammunity.org/2022/formulas/mathematics/college/rm7ufwuv7uqeb215w3543i2p9i0db4d5jf.png)
Solving (b): P(X > 1.64)
First, we calculate the z score using:
![z = (X - \bar x)/(\sigma)](https://img.qammunity.org/2022/formulas/mathematics/college/khii7oe88f0wadblscpqih54uzp256kh6i.png)
This gives:
![z = (1.64 - 0)/(1)](https://img.qammunity.org/2022/formulas/mathematics/college/1c72m1snil2swsjauredj4kbv8alhq0uhv.png)
![z = (1.64)/(1)](https://img.qammunity.org/2022/formulas/mathematics/college/nrl48ycdijxtxedvd20xs8ipfgg3txhxdh.png)
![z = 1.64](https://img.qammunity.org/2022/formulas/mathematics/college/z8vyijfqomecaqgu41xnwn3ek0rkrbrpoc.png)
The probability is then solved using:
![(X > 1.64) = P(z >1.64)](https://img.qammunity.org/2022/formulas/mathematics/college/pcqyecda1x9m9lm2v2f4ljk2r4e826gf5r.png)
![P(z >1.64) = 1 - P(z<1.64)](https://img.qammunity.org/2022/formulas/mathematics/college/ma74sllh83zcduxsbvmmqkebr41n6ksti2.png)
From the standard normal distribution table
![P(z >1.64) = 1 - 0.9495](https://img.qammunity.org/2022/formulas/mathematics/college/oa7rxsczkb10s6hmv5vq6fds4dmwwzhkx4.png)
So:
![P(X >1.64) = 0.0505](https://img.qammunity.org/2022/formulas/mathematics/college/1w9792b8qauibds7d2angsxfa2edcc05jz.png)
Solving (c): P(0.5 < X < 0.5)
This can be split as:
![P(0.5 < X < 0.5) = P(0.5<X) - P(X<0.5)](https://img.qammunity.org/2022/formulas/mathematics/college/1ki681ymyx0pnq8iqp5lktx07gr9i2qlcz.png)
In probability:
![P(0.5<X) = 1 - P(X>0.5)](https://img.qammunity.org/2022/formulas/mathematics/college/wlj4qsawevt3zsnbx333uknw0872ryva5j.png)
![P(0.5<X) = 1 - [1 - P(X<0.5)]](https://img.qammunity.org/2022/formulas/mathematics/college/x0mh7mhgmtl1rpp0ueq368updqy7ectg5v.png)
![P(0.5<X) = 1 - 1 + P(X<0.5)](https://img.qammunity.org/2022/formulas/mathematics/college/mr8q35y8v49oqguj21coe3zga7zefzrc9k.png)
![P(0.5<X) = P(X<0.5)](https://img.qammunity.org/2022/formulas/mathematics/college/ppva86iikbx944nlpex0e5nczxv2l57vru.png)
becomes
![P(0.5 < X < 0.5) = P(X<0.5) - P(X<0.5)](https://img.qammunity.org/2022/formulas/mathematics/college/mz76srqg5r6bheqpusn3u7m6u1ggmxmg7i.png)
![P(0.5 < X < 0.5) = 0](https://img.qammunity.org/2022/formulas/mathematics/college/zvbn43kknnd5fntk3ewq6thkwgu17w0qgd.png)