Answer:
See explanations below
Explanation:
Given the functions f(x)=2x+3 and g(x)=x^2-1
a. Find f(g(x))
f(g(x)) = f(x^2-1)
f(g(x)) = 2(x^2-1)+3
f(g(x))= 2x^2-2+3
f(g(x)) = 2x^2+1
Hence the composite function f(g(x)) is 2x^2+1
b) g(f(x)) = g(2x+3)
g(f(x) = (2x+3)^2-1
g(f(x)) = 4x^2+12x+9-1
g(f(x)) = 4x^2+12x+8