34.3k views
25 votes
Find the general solution of (x+3)y’=2y

1 Answer

11 votes

Answer:


y=C(x+3)^2

Explanation:

We are given:


\displaystyle (x+3)y^\prime=2y

Separation of Variables:


\displaystyle (1)/(y)(dy)/(dx)=(2)/(x+3)

So:


\displaystyle (dy)/(y)=(2)/(x+3) \, dx

Integrate:


\displaystyle \int(dy)/(y)=\int(2)/(x+3)\, dx

Integrate:


\displaystyle \ln|y|=2\ln|x+3|+C

Raise both sides to e:


|y|=e^(2\ln|x+3|+C)

Simplify:


|y|=(e^(\ln|x+3|))^2\cdot e^C

So:


|y|=C|x+3|^2

Simplify:


y=\pm C(x+3)^2=C(x+3)^2

User Rizky Ramadhan
by
3.7k points