Final answer:
To find the y-coordinate of point B, you can use the Distance Formula. By substituting the given values into the formula and simplifying, you find that the y-coordinate of point B can be either 3 + √19 or 3 - √19.
Step-by-step explanation:
To find the y-coordinate of point B, we can use the Distance Formula. The formula is:
![d = \sqrt{((x2 - x1)^2 + (y2 - y1)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zveum5qxbfu65v500774oipbnzzsw8qdir.png)
Given that point A is located at (1, 3) and the x-coordinate of point B is 9, we can substitute these values into the formula:
![d = \sqrt{((9 - 1)^2 + (y2 - 3)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/fesw204ydpzbdx68gcc3bw3laxg4mh7wmy.png)
Since AB is 10, we can replace d with 10 and simplify:
![10 = \sqrt{((9 - 1)^2 + (y2 - 3)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/zley3dsil4k03quvdryxli9qra8eqs1h0w.png)
Squaring both sides of the equation:
![100 = (9 - 1)^2 + (y2 - 3)^2](https://img.qammunity.org/2022/formulas/mathematics/high-school/reywm7bq24i2c0cgd1dj47ladty1yuad9t.png)
![81 + (y2 - 3)^2 = 100](https://img.qammunity.org/2022/formulas/mathematics/high-school/uearr9tgyj07mwed61yvxzqkkaaulbw2k8.png)
![(y2 - 3)^2 = 100 - 81](https://img.qammunity.org/2022/formulas/mathematics/high-school/5pttmjyob5bl414uvqzikrcd70gz7m9ce1.png)
![(y2 - 3)^2 = 19](https://img.qammunity.org/2022/formulas/mathematics/high-school/l3qt13olcvmkyjr9ddqo447uvdjwnb53jw.png)
![y2 - 3 = +/-\sqrt{19](https://img.qammunity.org/2022/formulas/mathematics/high-school/3wp0u4dz0fz8d9tfqtnd90nbls10dqalbn.png)
So, the y-coordinate of point B can be either 3 + √19 or 3 - √19.