224k views
4 votes
Prove that the points A (-3,-1), B(6,5) and C (3,3) are collineas

2 Answers

12 votes

Answer:

see explanation

Explanation:

To show the points are collinear, that is lie on the same line.

Then the slope between A and B, B and C must be equal

Calculate slope m using the slope formula

m =
(y_(2)-y_(1) )/(x_(2)-x_(1) )

with (x₁, y₁ ) = A(- 3, - 1) and (x₂, y₂ ) = B(6, 5)


m_(AB) =
(5+1)/(6+3) =
(6)/(9) =
(2)/(3)

Repeat with (x₁, y₁ ) = B(6, 5) and (x₂, y₂ ) = C(3, 3)


m_(BC) =
(3-5)/(3-6) =
(-2)/(-3) =
(2)/(3)

Since the slope between the 2 segments are equal and there is a common point B.

Then the points A, B and C are collinear

User George Dima
by
8.4k points
7 votes

Answer:

nose porque está en una idioma que no se

User Ventaquil
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories