129k views
10 votes
This cone has a height of 27 centimeters and a diameter of 32 centimeters. What is the volume, in cubic centimeters, of the cone? Volume = cm3

can somebody help me with this.

2 Answers

7 votes

Answer:

The area of cone is 7240cm³.

Explanation:

Given that the diameter is 2 times greater than radius.

So the radius of this cone will be 16cm.

Next, we have to apply volume formula, V = (1/3)×(area of circle)×height.

Formula for area of circle is A = π×r² :


V = (1)/(3) * \pi * {r}^(2) * h


V = (1)/(3) * \pi * {16}^(2) * 27


V = 7240 { \: cm}^(3) \: \: (3sf)

User Mweiss
by
4.3k points
8 votes

Answer:

The volume of cylinder is 7234.56 cm³.

Step-by-step explanation:

Given :


  • \small\purple\bull Height of cone = 27 cm.

  • \small\purple\bull Diameter of cone = 32 cm

To Find :


  • \small\purple\bull Radius of cone

  • \small\purple\bull Volume of cone

Using Formulas :


\star{\small{\underline{\boxed{\sf{\pink{R = (D)/(2)}}}}}}


  • \blue\star R = Radius

  • \blue\star D = Diameter


\star{\small{\underline{\boxed{\sf{\pink{Volume_((Cone)) = (1)/(3)\pi{r}^(2)h}}}}}}


  • \blue\star π = 3.14

  • \blue\star r = radius

  • \blue\star h = height

Solution :

Finding the radius of cone by substituting the values in the formula :


\implies{\sf{Radius = (D)/(2)}}


\implies{\sf{Radius = (32)/(2)}}


\implies{\sf{Radius = \cancel{(32)/(2)}}}


\implies{\sf{\underline{\underline{\red{Radius = 16 \: cm}}}}}

Hence, the radius of cone is 16 cm.


\rule{200}2

Now, finding the volume of cone by substituting the values in the formula :


{\implies{\sf{Volume_((Cone)) = (1)/(3)\pi{r}^(2)h}}}


{\implies{\sf{Volume_((Cone)) = (1)/(3) * 3.14 * {(16)}^(2) * 27}}}


{\implies{\sf{Volume_((Cone)) = \frac{1}{\cancel{3}} * (314)/(100) * {(16 * 16)}* \cancel{27}}}}


{\implies{\sf{Volume_((Cone)) = (314)/(100) * 256 * 9}}}


{\implies{\sf{Volume_((Cone)) = (314)/(100) * 2304}}}


{\implies{\sf{Volume_((Cone)) = (314 * 2304)/(100)}}}


{\implies{\sf{Volume_((Cone)) = (723456)/(100)}}}


{\implies{\sf{\underline{\underline{\red{Volume_((Cone)) = 7234.56 \: {cm}^(3)}}}}}}

Hence, the volume of cone is 7234.56 cm³.


\rule{300}{1.5}

User Kaddy
by
4.0k points