129k views
10 votes
This cone has a height of 27 centimeters and a diameter of 32 centimeters. What is the volume, in cubic centimeters, of the cone? Volume = cm3

can somebody help me with this.

2 Answers

7 votes

Answer:

The area of cone is 7240cm³.

Explanation:

Given that the diameter is 2 times greater than radius.

So the radius of this cone will be 16cm.

Next, we have to apply volume formula, V = (1/3)×(area of circle)×height.

Formula for area of circle is A = π×r² :


V = (1)/(3) * \pi * {r}^(2) * h


V = (1)/(3) * \pi * {16}^(2) * 27


V = 7240 { \: cm}^(3) \: \: (3sf)

User Mweiss
by
8.1k points
8 votes

Answer:

The volume of cylinder is 7234.56 cm³.

Step-by-step explanation:

Given :


  • \small\purple\bull Height of cone = 27 cm.

  • \small\purple\bull Diameter of cone = 32 cm

To Find :


  • \small\purple\bull Radius of cone

  • \small\purple\bull Volume of cone

Using Formulas :


\star{\small{\underline{\boxed{\sf{\pink{R = (D)/(2)}}}}}}


  • \blue\star R = Radius

  • \blue\star D = Diameter


\star{\small{\underline{\boxed{\sf{\pink{Volume_((Cone)) = (1)/(3)\pi{r}^(2)h}}}}}}


  • \blue\star π = 3.14

  • \blue\star r = radius

  • \blue\star h = height

Solution :

Finding the radius of cone by substituting the values in the formula :


\implies{\sf{Radius = (D)/(2)}}


\implies{\sf{Radius = (32)/(2)}}


\implies{\sf{Radius = \cancel{(32)/(2)}}}


\implies{\sf{\underline{\underline{\red{Radius = 16 \: cm}}}}}

Hence, the radius of cone is 16 cm.


\rule{200}2

Now, finding the volume of cone by substituting the values in the formula :


{\implies{\sf{Volume_((Cone)) = (1)/(3)\pi{r}^(2)h}}}


{\implies{\sf{Volume_((Cone)) = (1)/(3) * 3.14 * {(16)}^(2) * 27}}}


{\implies{\sf{Volume_((Cone)) = \frac{1}{\cancel{3}} * (314)/(100) * {(16 * 16)}* \cancel{27}}}}


{\implies{\sf{Volume_((Cone)) = (314)/(100) * 256 * 9}}}


{\implies{\sf{Volume_((Cone)) = (314)/(100) * 2304}}}


{\implies{\sf{Volume_((Cone)) = (314 * 2304)/(100)}}}


{\implies{\sf{Volume_((Cone)) = (723456)/(100)}}}


{\implies{\sf{\underline{\underline{\red{Volume_((Cone)) = 7234.56 \: {cm}^(3)}}}}}}

Hence, the volume of cone is 7234.56 cm³.


\rule{300}{1.5}

User Kaddy
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories