151k views
21 votes
Prove identity


\frac{1 - \tan {}^(2) (x) }{ \cot {}^(2) (x) - 1 } = \tan {}^(2) (x)
Prove identity​

1 Answer

8 votes

Explanation:


\frac{1 - \tan {}^(2) (x) }{ \cot {}^(2) (x) - 1} = \tan {}^(2) (x)


\frac{1 - \frac{ \sin {}^(2) (x) }{ \cos {}^(2) (x) } }{ \frac{ \cos {}^(2) (x) }{ \sin {}^(2) (x) } - 1 }


\frac{ \frac{ \cos {}^(2) (x) - \sin {}^(2) (x) }{ \cos {}^(2) (x) } }{ \frac{ \cos {}^(2) (x ) - \sin {}^(2) (x) }{ \sin {}^(2) (x) } }


\frac{ \sin {}^(2) (x) }{ \cos {}^(2) (x) } = \tan {}^(2) (x)


\tan {}^(2) (x) = \tan {}^(2) (x)

User Starwave
by
4.1k points