151k views
21 votes
Prove identity


\frac{1 - \tan {}^(2) (x) }{ \cot {}^(2) (x) - 1 } = \tan {}^(2) (x)
Prove identity​

1 Answer

8 votes

Explanation:


\frac{1 - \tan {}^(2) (x) }{ \cot {}^(2) (x) - 1} = \tan {}^(2) (x)


\frac{1 - \frac{ \sin {}^(2) (x) }{ \cos {}^(2) (x) } }{ \frac{ \cos {}^(2) (x) }{ \sin {}^(2) (x) } - 1 }


\frac{ \frac{ \cos {}^(2) (x) - \sin {}^(2) (x) }{ \cos {}^(2) (x) } }{ \frac{ \cos {}^(2) (x ) - \sin {}^(2) (x) }{ \sin {}^(2) (x) } }


\frac{ \sin {}^(2) (x) }{ \cos {}^(2) (x) } = \tan {}^(2) (x)


\tan {}^(2) (x) = \tan {}^(2) (x)

User Starwave
by
8.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories