The solution to
is
, rounded to the nearest hundredths.
To solve the equation
for x, follow these steps:
1. Combine the logarithmic terms on one side:
![\[2 \cdot \log_9(7) - 2 \cdot \log_9(6.3) = (1)/(2) \cdot \log_9(x)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/hn4gr7dc2sombs87ct5p7xlwqvvgir4mxu.png)
2. Use the properties of logarithms to simplify:
![\[\log_9\left((7^2)/(6.3^2)\right) = \log_9(x^(1/2))\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/rs6qtiwaw2ku6y09no7hf52riac0o10icx.png)
3. Set the arguments equal to each other:
![\[(7^2)/(6.3^2) = x^(1/2)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/uhji2tcn1m6z5pag0i34ywtlf0czobp4f6.png)
4. Solve for x:
![\[x = \left((7^2)/(6.3^2)\right)^2\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/kl6o8kn94o1nkgsu6nx5ffcpa6pxhdl7im.png)
Now, calculate the value of x:
![\[x \approx \left((49)/(39.69)\right)^2 \approx 1.52646\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tq2b8zvfghqwb1r68r97dsn0by4n8ph1ja.png)
Rounded to the nearest hundredths,
.