111k views
3 votes
Pls i need help :)))))

Pls i need help :)))))-example-1
User Martinecko
by
8.5k points

1 Answer

0 votes

The simplified form of algebraic expressions are now shown:

Case 1:
x^{(5)/(3)}

Case 2:
m^{(8)/(5) }

Case 3:
y^{(11)/(8) }

Case 4:
r^{(4)/(5)}\cdot s^{(27)/(8) }

Case 5:
6\cdot b^{(19)/(15)}

Case 6:
m^{(2)/(5)}

Case 7:
\frac{s^{(2)/(7)}}{r^{(3)/(4)}}

Case 8:
x^{(3)/(16) }

Case 9:
\frac{n^{(1)/(10) }}{m^{(7)/(9) }}

Case 10:
\frac{y^{(2)/(9) }}{x^{(8)/(45)}}

How to simplify algebraic expressions by power properties

In this problem we need to simplify algebraic expressions by power properties, which are introduced below:

Product of two powers:


a^m \cdot a^n = a^(m+n)

Division of two powers:


(a^m)/(a^n) = a^(m - n)

Power of a power:


(a^m)^n = a^(m\cdot n)

Further power properties:


a^(0) = 1

Now we proceed to simplify each expression by means of power properties:

Case 1:


x^{(1)/(3)}\cdot x^{(4)/(3)}


x^{(1)/(3) + (4)/(3)}


x^{(5)/(3)}

Case 2:


m^{(2)/(5)}\cdot (m^(3)/(5))^2


m^{(2)/(5)}\cdot m^{(6)/(5)}


m^{(2)/(5) + (6)/(5) }


m^{(8)/(5) }

Case 3:


y^{(3)/(4) }\cdot y^{(5)/(8) }


y^{(3)/(4) + (5)/(8) }


y^{(6)/(8) + (5)/(8) }


y^{(11)/(8) }

Case 4:


(r^{(1)/(5) }\cdot s^{(7)/(8)})\cdot (r^{(3)/(5)}\cdot s^{(5)/(2)})


(r^{(1)/(5)}\cdot r^{(3)/(5)})\cdot (s^{(7)/(8)}\cdot s^{(5)/(2)})


(r^{(1+3)/(5) })\cdot (s^{(14 + 40)/(16) })


r^{(4)/(5)}\cdot s^{(27)/(8) }

Case 5:


(2\cdot b^{(3)/(5)})\cdot (3\cdot b^{(2)/(3)})


6\cdot b^{(3)/(5) + (2)/(3) }


6\cdot b^{(9 + 10)/(15) }


6\cdot b^{(19)/(15)}

Case 6:


\frac{m^{(4)/(5) }}{m^{(2)/(5) }}


m^{(4)/(5) - (2)/(5) }


m^{(2)/(5)}

Case 7:


\frac{s^{(4)/(7)}}{r^{(3)/(4)}\cdot s^{(2)/(7)}}


\frac{s^{(4)/(7) - (2)/(7) }}{r^{(3)/(4) }}


\frac{s^{(2)/(7)}}{r^{(3)/(4)}}

Case 8:


\left(\frac{x^2}{x^{(3)/(2)}} \right)^{(3)/(4)}


(x^{2-(3)/(2) })^{(3)/(4) }


(x^{(1)/(4) })^{(3)/(4) }


x^{(3)/(16) }

Case 9:


\frac{m^{(5)/(9) }\cdot n^{(4)/(5) }}{m^{(4)/(3) }\cdot n^{(7)/(10) }}


(m^{(5)/(9) - (4)/(3) })\cdot (n^{(4)/(5) -(7)/(10) })


m^{-(7 )/(9)}\cdot n^{(1)/(10) }


\frac{n^{(1)/(10) }}{m^{(7)/(9) }}

Case 10:


\left(\frac{x^{(2)/(5) }\cdot y^{(5)/(6)}}{x^{(2)/(3)}\cdot y^{(1)/(2)}} \right)^{(2)/(3) }


(x^{(2)/(5)-(2)/(3) } \cdot y^{(5)/(6)-(1)/(2)})^{(2)/(3) }


(x^{-(4)/(15) }\cdot y^{(1)/(3) })^{(2)/(3) }


x^{-(8)/(45) }\cdot y^{(2)/(9) }


\frac{y^{(2)/(9) }}{x^{(8)/(45)}}

User Nalum
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories