111k views
3 votes
Pls i need help :)))))

Pls i need help :)))))-example-1
User Martinecko
by
8.5k points

1 Answer

0 votes

The simplified form of algebraic expressions are now shown:

Case 1:
x^{(5)/(3)}

Case 2:
m^{(8)/(5) }

Case 3:
y^{(11)/(8) }

Case 4:
r^{(4)/(5)}\cdot s^{(27)/(8) }

Case 5:
6\cdot b^{(19)/(15)}

Case 6:
m^{(2)/(5)}

Case 7:
\frac{s^{(2)/(7)}}{r^{(3)/(4)}}

Case 8:
x^{(3)/(16) }

Case 9:
\frac{n^{(1)/(10) }}{m^{(7)/(9) }}

Case 10:
\frac{y^{(2)/(9) }}{x^{(8)/(45)}}

How to simplify algebraic expressions by power properties

In this problem we need to simplify algebraic expressions by power properties, which are introduced below:

Product of two powers:


a^m \cdot a^n = a^(m+n)

Division of two powers:


(a^m)/(a^n) = a^(m - n)

Power of a power:


(a^m)^n = a^(m\cdot n)

Further power properties:


a^(0) = 1

Now we proceed to simplify each expression by means of power properties:

Case 1:


x^{(1)/(3)}\cdot x^{(4)/(3)}


x^{(1)/(3) + (4)/(3)}


x^{(5)/(3)}

Case 2:


m^{(2)/(5)}\cdot (m^(3)/(5))^2


m^{(2)/(5)}\cdot m^{(6)/(5)}


m^{(2)/(5) + (6)/(5) }


m^{(8)/(5) }

Case 3:


y^{(3)/(4) }\cdot y^{(5)/(8) }


y^{(3)/(4) + (5)/(8) }


y^{(6)/(8) + (5)/(8) }


y^{(11)/(8) }

Case 4:


(r^{(1)/(5) }\cdot s^{(7)/(8)})\cdot (r^{(3)/(5)}\cdot s^{(5)/(2)})


(r^{(1)/(5)}\cdot r^{(3)/(5)})\cdot (s^{(7)/(8)}\cdot s^{(5)/(2)})


(r^{(1+3)/(5) })\cdot (s^{(14 + 40)/(16) })


r^{(4)/(5)}\cdot s^{(27)/(8) }

Case 5:


(2\cdot b^{(3)/(5)})\cdot (3\cdot b^{(2)/(3)})


6\cdot b^{(3)/(5) + (2)/(3) }


6\cdot b^{(9 + 10)/(15) }


6\cdot b^{(19)/(15)}

Case 6:


\frac{m^{(4)/(5) }}{m^{(2)/(5) }}


m^{(4)/(5) - (2)/(5) }


m^{(2)/(5)}

Case 7:


\frac{s^{(4)/(7)}}{r^{(3)/(4)}\cdot s^{(2)/(7)}}


\frac{s^{(4)/(7) - (2)/(7) }}{r^{(3)/(4) }}


\frac{s^{(2)/(7)}}{r^{(3)/(4)}}

Case 8:


\left(\frac{x^2}{x^{(3)/(2)}} \right)^{(3)/(4)}


(x^{2-(3)/(2) })^{(3)/(4) }


(x^{(1)/(4) })^{(3)/(4) }


x^{(3)/(16) }

Case 9:


\frac{m^{(5)/(9) }\cdot n^{(4)/(5) }}{m^{(4)/(3) }\cdot n^{(7)/(10) }}


(m^{(5)/(9) - (4)/(3) })\cdot (n^{(4)/(5) -(7)/(10) })


m^{-(7 )/(9)}\cdot n^{(1)/(10) }


\frac{n^{(1)/(10) }}{m^{(7)/(9) }}

Case 10:


\left(\frac{x^{(2)/(5) }\cdot y^{(5)/(6)}}{x^{(2)/(3)}\cdot y^{(1)/(2)}} \right)^{(2)/(3) }


(x^{(2)/(5)-(2)/(3) } \cdot y^{(5)/(6)-(1)/(2)})^{(2)/(3) }


(x^{-(4)/(15) }\cdot y^{(1)/(3) })^{(2)/(3) }


x^{-(8)/(45) }\cdot y^{(2)/(9) }


\frac{y^{(2)/(9) }}{x^{(8)/(45)}}

User Nalum
by
7.8k points

No related questions found