177k views
5 votes
The sum of the fractions (5c-1)/(2) and (3c-4)/(4) is 18. Find the value of c.

1 Answer

5 votes

Final answer:

To solve the given equation, we find a common denominator, combine the fractions, multiply to get rid of the denominator, and then solve for c, which results in c being equal to 6.

Step-by-step explanation:

To find the value of c given the equation (5c-1)/2 + (3c-4)/4 = 18, we need to combine these fractions into a single fraction with a common denominator:

  1. First, identify a common denominator, which in this case is 4.
  2. Then, rewrite each fraction with the common denominator: (2*(5c-1))/4 + (3c-4)/4.
  3. Combine the numerators: ((2*(5c-1)) + (3c-4))/4.
  4. The new equation is ((10c-2) + (3c-4))/4 = 18.
  5. Multiply both sides by 4 to get rid of the denominator: 10c - 2 + 3c - 4 = 72.
  6. Simplify and solve for c: 13c - 6 = 72, 13c = 78, c = 6.

Therefore, the value of c is 6.

User Barka
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories