35.0k views
2 votes
Clayton wants to be a musician. After school one afternoon, he spends ___ of his time practicing the drums and 3/8 of the remaining time working on homework and eating dinner. He spends the remaining ___ texting and talking to his friends. How long did he practice the drums?

User Abed Putra
by
7.9k points

1 Answer

4 votes

Final Answer:

Clayton spends
\( \underline{(5)/(8)} \) of his time practicing the drums, and
\( \underline{(3)/(8)} \) of the remaining time on homework and dinner. The remaining
\( \underline{(3)/(8)} \) is spent texting and talking to friends.

Step-by-step explanation:

Let ( T ) represent the total time Clayton has after school. He spends
\( \underline{(5)/(8)T} \) practicing the drums. The remaining time is
\( \underline{(3)/(8)T} \). Now,
\( \underline{(3)/(8)T} \) is split between homework and dinner, leaving
\( \underline{(5)/(8)} \) for practicing:


\[ \underline{(3)/(8)T} = (3)/(8) * \underline{(3)/(8)T} + (3)/(8) * \underline{(5)/(8)T} \]

Solving for
\( \underline{(5)/(8)T} \) (time spent practicing), we get:


\[ \underline{(5)/(8)T} = (9)/(64)T + (15)/(64)T \]

Combining the terms on the right side:


\[ \underline{(5)/(8)T} = (24)/(64)T \]

Simplifying the fraction:


\[ \underline{(5)/(8)T} = (3)/(4)T \]

Thus, Clayton spends
\( \underline{(3)/(4)} \) of his total time practicing the drums.

In conclusion, Clayton spends
\( \underline{(3)/(4)} \) of his time practicing the drums, which corresponds to
\( \underline{(5)/(8)} \) of his total time after school. This allocation of time aligns with his musical aspirations and ensures a balanced engagement in other activities.

User Charlie
by
7.7k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories