Answer:
![\displaystyle \int\limits^{(\pi)/(2)}_{(\pi)/(3)} {(x + \cos x)} \, dx = (5 \pi ^2)/(72) + 1 - (√(3))/(2)](https://img.qammunity.org/2023/formulas/mathematics/high-school/z0m4o3nxb8pnq4cyu390y1ycm2mzuy9gf5.png)
General Formulas and Concepts:
Calculus
Integration
Integration Rule [Reverse Power Rule]:
![\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C](https://img.qammunity.org/2023/formulas/mathematics/high-school/vj5syfvwlj46o0vu5ymkdyf35d0hyppyfq.png)
Integration Rule [Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)](https://img.qammunity.org/2023/formulas/mathematics/high-school/tmf0hw6o4216p300xq17pa8prpiwfy01dp.png)
Integration Property [Addition/Subtraction]:
![\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx](https://img.qammunity.org/2023/formulas/mathematics/high-school/w224nutj77z7kfur2f8jvfl9u3patznxhc.png)
Explanation:
Step 1: Define
Identify.
![\displaystyle \int\limits^{(\pi)/(2)}_{(\pi)/(3)} {(x + \cos x)} \, dx](https://img.qammunity.org/2023/formulas/mathematics/high-school/iqdp7kqevhhyolu2m14sutlraw1hvrcv1h.png)
Step 2: Integrate
- [Integral] Rewrite [Integration Property - Addition/Subtraction]:
![\displaystyle \int\limits^{(\pi)/(2)}_{(\pi)/(3)} {(x + \cos x)} \, dx = \int\limits^{(\pi)/(2)}_{(\pi)/(3)} {x} \, dx + \int\limits^{(\pi)/(2)}_{(\pi)/(3)} {\cos x} \, dx](https://img.qammunity.org/2023/formulas/mathematics/high-school/imx9we57xj3q2evctted34hq6plbz9me7p.png)
- [Left Integral] Integration Rule [Reverse Power Rule]:
![\displaystyle \int\limits^{(\pi)/(2)}_{(\pi)/(3)} {(x + \cos x)} \, dx = (x^2)/(2) \bigg| \limits^{(\pi)/(2)}_{(\pi)/(3)} + \int\limits^{(\pi)/(2)}_{(\pi)/(3)} {\cos x} \, dx](https://img.qammunity.org/2023/formulas/mathematics/high-school/mpm04c69zdgxtiw91wco6j41ob34lyjwod.png)
- [Right Integral] Trigonometric Integration:
![\displaystyle \int\limits^{(\pi)/(2)}_{(\pi)/(3)} {(x + \cos x)} \, dx = (x^2)/(2) \bigg| \limits^{(\pi)/(2)}_{(\pi)/(3)} + \sin x \bigg| \limits^{(\pi)/(2)}_{(\pi)/(3)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/jlq11cpd34ix7m8m7lr233c8f67zluap2j.png)
- Integration Rule [Fundamental Theorem of Calculus 1]:
![\displaystyle \int\limits^{(\pi)/(2)}_{(\pi)/(3)} {(x + \cos x)} \, dx = (5 \pi ^2)/(72) + \bigg( 1 - (√(3))/(2) \bigg)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hzpdu75azdfaeszicqss4z65roezid5qh3.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration