Answer:
Explanation:
Given that:
the sample proportion p = 0.39
sample size = 100
Then np = 39
Using normal approximation
The sampling distribution from the sample proportion is approximately normal.
Thus, mean
![\mu _(\hat p) = p = 0.39](https://img.qammunity.org/2022/formulas/mathematics/college/auk7gkwi1pd5nvl2zeflchtec1un27gdz2.png)
The standard deviation;
![\sigma = \sqrt{(p(1-p))/(n) }](https://img.qammunity.org/2022/formulas/mathematics/college/ofpc18aezgv2ftp0fftzlgehm2lbalz91f.png)
![\sigma = \sqrt{(0.39(1-0.39))/(100) }](https://img.qammunity.org/2022/formulas/mathematics/college/j6x5c32qdvjse102rjo89gqmmpfusp9gt9.png)
![\sigma = 0.048](https://img.qammunity.org/2022/formulas/mathematics/college/kl6lk5g3pejn9ywkhjkalk3ttu9nrokmbi.png)
The test statistics can be computed as:
![Z = \frac{{\hat _(p)} - \mu_{_ {\hat p}} }{\sigma_(\hat p)}](https://img.qammunity.org/2022/formulas/mathematics/college/ndy57hm4x5ee47xuywxaifgbm0u2z24dma.png)
![Z = (0.3 - 0.39 )/(0.0488)](https://img.qammunity.org/2022/formulas/mathematics/college/rm772hrbnib7g7xlpj6fc6kngbbwd9qlvt.png)
![Z = -1. 8 4](https://img.qammunity.org/2022/formulas/mathematics/college/ofo6m3l0p3z6u57ftzh06wc64a3rk3d7nq.png)
From the z - tables;
![P (\hat p \le 0.3 ) = P(z \le -1.84)](https://img.qammunity.org/2022/formulas/mathematics/college/cvi8lfi3zx1qvd1dwoq12xu2n6lwpjnrtf.png)
![\mathbf{P (\hat p \le 0.3 ) = 0.0329}](https://img.qammunity.org/2022/formulas/mathematics/college/sgtl65f0j4i5v6ni8zszao577rh5uevp0j.png)
(b)
Here;
the sample proportion = 0.39
the sample size n = 400
Since np = 400 * 0.39 = 156
Thus, using normal approximation.
From the sample proportion, the sampling distribution is approximate to the mean
![\mu_(\hat p) = p = 0.39](https://img.qammunity.org/2022/formulas/mathematics/college/687tuiid7s73rvqqnecfz9kqnc5qcn34bj.png)
the standard deviation
![\sigma_(\hat p) = \sqrt{(p(1-p))/(n) }](https://img.qammunity.org/2022/formulas/mathematics/college/ai7jv47qb3b2x7g4199avee4y33apspob8.png)
![\sigma_(\hat p) = \sqrt{(0.39 (1-0.39))/(400) }](https://img.qammunity.org/2022/formulas/mathematics/college/zwfd3pd0gct6rsepev6s7hfvvr75ji8obm.png)
![\sigma_(\hat p) =0.0244](https://img.qammunity.org/2022/formulas/mathematics/college/wnpr1187qfx5v6k3acpzdvn8sotu4bqdyv.png)
The test statistics can be computed as:
![Z = \frac{{\hat _(p)} - \mu_{_ {\hat p}} }{\sigma_(\hat p)}](https://img.qammunity.org/2022/formulas/mathematics/college/ndy57hm4x5ee47xuywxaifgbm0u2z24dma.png)
![Z = (0.3 - 0.39 )/(0.0244)](https://img.qammunity.org/2022/formulas/mathematics/college/3m7f9vy5ryjod59ys8lcp8c21fiel9c546.png)
![Z = -3.69](https://img.qammunity.org/2022/formulas/mathematics/college/o1jdc4hh37lj1z1zlrmyejyalwvimswoej.png)
From the z - tables;
![P (\hat p \le 0.3 ) = P(z \le -3.69)](https://img.qammunity.org/2022/formulas/mathematics/college/bwlaudwi0j3c5q5qvjgrq45r34ssdijrx1.png)
![\mathbf{P (\hat p \le 0.3 ) = 0.0001}](https://img.qammunity.org/2022/formulas/mathematics/college/vgtioprvh6597us80m8t8k06a630ak4774.png)
(c) The effect of the sample size on the sampling distribution is that:
As sample size builds up, the standard deviation of the sampling distribution decreases.
In addition to that, reduction in the standard deviation resulted in increases in the Z score, and the probability of having a sample proportion that is less than 30% also decreases.