Final answer:
The exponential function to model the increasing rent for James's apartment is R(t) = 1600 × (1 + 0.0175)^t. After substituting t with 15, the calculated rent after 15 years, rounded to the nearest dollar, is $2075.
Step-by-step explanation:
To model the situation where James rents an apartment with an initial monthly rent of $1,600 and the rent increases by 1.75% each year, we use an exponential function. The general form of the exponential function for this scenario is:
R(t) = R_0 imes (1 + r)^t
Where:
- R(t) is the rent after t years,
- R_0 is the initial rent,
- r is the annual increase rate (as a decimal),
- t is the number of years.
Plugging the given values into this formula:
R(t) = 1600 imes (1 + 0.0175)^t
To calculate the rent after 15 years, we substitute t with 15:
R(15) = 1600 imes (1 + 0.0175)^{15}
Using a calculator, we find:
R(15) = 1600 imes (1.0175)^{15}
R(15) = 1600 imes 1.2971
R(15) = 2075.376
Rounded to the nearest dollar, the rent after 15 years is $2075.