176,937 views
24 votes
24 votes

√(3^2+27)+2^3+\sqrt[3]{64}

User Riyas TK
by
2.6k points

2 Answers

17 votes
17 votes


\boldsymbol{\sf{√(3^2+27)+2^3+\sqrt[3]{64} }}

Calculate 3 to the power of 2.


\boldsymbol{\sf{√(9+27)+2^3+\sqrt[3]{64} }}

Add 9 and 27.


\boldsymbol{\sf{√(36)+2^3+\sqrt[3]{64} }}

Find the square root of 36.


\boldsymbol{\sf{6+2^3+\sqrt[3]{64} }}

Calculate 2 to the power of 3.


\boldsymbol{\sf{6+8+\sqrt[3]{64} }}

Add 6 and 8.


\boldsymbol{\sf{14+\sqrt[3]{64} }}

Calculate
\sqrt[3]{64}


\boldsymbol{\sf{14+4=18}}

User Antoin
by
2.9k points
23 votes
23 votes

Answer:


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{ 18}

Step by step explanation:


\: \: \: \: \: \: \: \bold{√(9 + 27) + 2 {}^(3) + \sqrt[3]{64} }

To solve this problem, the first thing we have to do is simplify 3² to 9, since it multiplies 2 times 3 to give us 9.


\: \: \: \: \: \: \: \: \: \: \: \: \bold{ √(36) + {2}^(3) + \sqrt[3]{64} }

Then we must add 9 + 27 to give us a result of 36.


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{6 + {2}^(3) + \sqrt[3]{64} }

Now we must multiply again but this time we are going to multiply 2 times 6 since 6 × 6 is equal to 36.


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{6 + 8 \: + \sqrt[3]{64} }

Now we must again multiply 3 times 2 to give us 8.


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{6 + 8 + 4}

Then we must add 6 + 8 + 4.


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{14 + 4}

Before finishing we know that we got 14, now we must add 14 + 4 to give us a result of 18.


\: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \bold{18}

Rpt: The result is 18.

User James Whiteley
by
3.4k points