146k views
20 votes
Write the following expression as a fraction in lowest terms:

\[2 + \cfrac{2}{2 + \cfrac{3}{3 + \cfrac{4}{4 + 5}}}.\]

User ErEcTuS
by
4.7k points

2 Answers

3 votes

Answer:

2 62/89

Explanation:

reduce its not super hard lmk if u need help

User Jayanth Bala
by
4.7k points
2 votes

Explanation:


\[2 + \cfrac{2}{2 + \cfrac{3}{3 + \cfrac{4}{4 + 5}}}\]=


\[2 + \cfrac{2}{2 + \cfrac{3}{3 + \cfrac{4}{9}}}\]=


\[2 + \cfrac{2}{2 + \cfrac{3}{\cfrac{31}{9}}}\]=


\[2 + \cfrac{2}{2 + \cfrac{27}{31} }}}\]=


\[2 + \cfrac{2}{ \cfrac{62+27}{31} }}}\]=


\[2 + \cfrac{2}{ \cfrac{89}{31} }}}\]=


\[2 + \cfrac{62}{{89} }}}\]=


\[2 \cfrac{62}{{89} }}}\]

User Ian Kemp
by
4.4k points