111k views
13 votes
B. 60 = 7 - 2y
40 + y = 4

B. 60 = 7 - 2y 40 + y = 4-example-1

2 Answers

3 votes

Answer:

(
(1)/(2), 2 )

Explanation:

6x = 7 - 2y → (1)

4x + y = 4 ( subtract 4x from both sides )

y = 4 - 4x → (2)

substitute y = 4 - 4x into (1)

6x = 7 - 2(4 - 4x) ← distribute and simplify

6x = 7 - 8 + 8x

6x = - 1 + 8x ( subtract 8x from both sides )

- 2x = - 1 ( divide both sides by - 2 )

x =
(1)/(2)

substitute this value into (2)

y = 4 - 4(
(1)/(2) ) = 4 - 2 = 2

solution is (
(1)/(2), 2 )

User Brock Hargreaves
by
3.8k points
2 votes


\qquad \qquad\huge \underline{\boxed{\sf Answer}}

The given equations are ~


\sf \: 6x + 2y = 7 \: \: \: \: \: \: \: (1)

and


\sf \: 4x + y = 4 \: \: \: \: \: \: \: \: \: (2)

Now, let's simplify equation 2 for y


\sf \: y = 4 - 4x \: \: \: \: \: \: \: \: \: \: (2)

Plug the given value of y in equation 1st ;


\qquad \sf  \dashrightarrow \: 6x + 2y = 7


\qquad \sf  \dashrightarrow \: 6x + 2(4 - 4x) = 7


\qquad \sf  \dashrightarrow \: 6x + 8 - 8x = 7


\qquad \sf  \dashrightarrow \: - 2x = 7 - 8


\qquad \sf  \dashrightarrow \: x = ( - 1) / ( - 2)


\qquad \sf  \dashrightarrow \: \therefore \: x = (1)/(2)

Now, use this value of x in equation 2nd to find the value of y ;


\qquad \sf  \dashrightarrow \: y = 4 - 4x


\qquad \sf  \dashrightarrow \: y = 4 - (4 * (1)/(2) )


\qquad \sf  \dashrightarrow \: y = 4 - 2


\qquad \sf  \dashrightarrow \: y = 2

Therefore, the required values are ~


\fbox \colorbox{black}{ \colorbox{white}{x} \:  \:  \:   \:  \:  \:  \: \: \colorbox{white}{=}  \:  \:  \:  \:  \:   + \colorbox{white}{ 1/2}}


\fbox \colorbox{black}{ \colorbox{white}{y} \:  \:  \:   \:  \:  \:  \: \: \colorbox{white}{=}  \:  \:  \:  \:  \:   + \colorbox{white}{2 \: \: \: \: }}

User Stopsatgreen
by
3.0k points