111k views
13 votes
B. 60 = 7 - 2y
40 + y = 4

B. 60 = 7 - 2y 40 + y = 4-example-1

2 Answers

3 votes

Answer:

(
(1)/(2), 2 )

Explanation:

6x = 7 - 2y → (1)

4x + y = 4 ( subtract 4x from both sides )

y = 4 - 4x → (2)

substitute y = 4 - 4x into (1)

6x = 7 - 2(4 - 4x) ← distribute and simplify

6x = 7 - 8 + 8x

6x = - 1 + 8x ( subtract 8x from both sides )

- 2x = - 1 ( divide both sides by - 2 )

x =
(1)/(2)

substitute this value into (2)

y = 4 - 4(
(1)/(2) ) = 4 - 2 = 2

solution is (
(1)/(2), 2 )

User Brock Hargreaves
by
7.8k points
2 votes


\qquad \qquad\huge \underline{\boxed{\sf Answer}}

The given equations are ~


\sf \: 6x + 2y = 7 \: \: \: \: \: \: \: (1)

and


\sf \: 4x + y = 4 \: \: \: \: \: \: \: \: \: (2)

Now, let's simplify equation 2 for y


\sf \: y = 4 - 4x \: \: \: \: \: \: \: \: \: \: (2)

Plug the given value of y in equation 1st ;


\qquad \sf  \dashrightarrow \: 6x + 2y = 7


\qquad \sf  \dashrightarrow \: 6x + 2(4 - 4x) = 7


\qquad \sf  \dashrightarrow \: 6x + 8 - 8x = 7


\qquad \sf  \dashrightarrow \: - 2x = 7 - 8


\qquad \sf  \dashrightarrow \: x = ( - 1) / ( - 2)


\qquad \sf  \dashrightarrow \: \therefore \: x = (1)/(2)

Now, use this value of x in equation 2nd to find the value of y ;


\qquad \sf  \dashrightarrow \: y = 4 - 4x


\qquad \sf  \dashrightarrow \: y = 4 - (4 * (1)/(2) )


\qquad \sf  \dashrightarrow \: y = 4 - 2


\qquad \sf  \dashrightarrow \: y = 2

Therefore, the required values are ~


\fbox \colorbox{black}{ \colorbox{white}{x} \:  \:  \:   \:  \:  \:  \: \: \colorbox{white}{=}  \:  \:  \:  \:  \:   + \colorbox{white}{ 1/2}}


\fbox \colorbox{black}{ \colorbox{white}{y} \:  \:  \:   \:  \:  \:  \: \: \colorbox{white}{=}  \:  \:  \:  \:  \:   + \colorbox{white}{2 \: \: \: \: }}

User Stopsatgreen
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories