92.8k views
16 votes
What is the missing side ?

What is the missing side ?-example-1

1 Answer

8 votes

Answer:


x=12

Explanation:

Method 1: Pythagorean Theorem

We can use the Pythagorean Theorem to solve for
x. The Pythagorean Theorem states that in a right triangle, the sum of the squares of the legs' side lengths is equal to the length of the hypotenuse squared. Simply put,
a^(2) +b^(2) =c^(2), where
a and
b are the legs and
c is the hypotenuse. In this case, we know that
a=x,
b=9, and
c=15, so we get:


a^(2) +b^(2) =c^(2)


x^(2) +9^(2) =15^(2) (Substitute
a=x,
b=9, and
c=15 into
a^(2) +b^(2) =c^(2))


x^(2) +81 =225 (Simplify exponents)


x^(2) +81-81=225-81 (Subtract
81 from both sides of the equation to isolate
x)


x^(2) =144 (Simplify)


\sqrt{x^(2)} =√(144) (Take the square root of both sides)


x=12,x=-12 (Simplify, remember that each positive number has two square roots: a positive one and a negative one)

In the context of the situation, we know that
x=-12 is an extraneous solution because a polygon cannot have negative side lengths. Therefore, the final answer is
x=12.

Method 2: Pythagorean Triples

Method 1 works, but there's an easier way to find the value of
x. If we look at the given lengths of
9 and
15, we can observe that this triangle is a
3-4-5 right triangle enlarged by a scale factor of
3, because
3*3=9 and
5*3=15. The only side length that's missing is the
4. Therefore,
x=4*3=12. Hope this helps!

User Medena
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories