407,471 views
11 votes
11 votes
What are the orded pair of the soultion for this system of equation

What are the orded pair of the soultion for this system of equation-example-1
User Dbeer
by
2.8k points

1 Answer

24 votes
24 votes

(2,-3)\text{ ;(3,-3)}

Step-by-step explanation

Step 1


\begin{gathered} f(x)=x^2-5x+3 \\ f(x)=-3 \end{gathered}

there is a value for y, that is the same for both equations, so


\begin{gathered} y_1=y_2 \\ x^2-5x+3=-3\Rightarrow equation\text{ (3)} \end{gathered}

solve equation (3)


\begin{gathered} x^2-5x+3=-3 \\ \text{add 3 in both sides} \\ x^2-5x+3+3=-3+3 \\ x^2-5x+6=0 \\ x^2-5x+6=0\Rightarrow ax^2+bx+c=0 \end{gathered}

hence, we can use the quadratic formula


\begin{gathered} x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \\ \text{replace} \\ x=\frac{+5\pm\sqrt[]{(-5)^2-4\cdot1\cdot6}}{2\cdot1} \\ x=\frac{+5\pm\sqrt[]{25-24}}{2} \\ x=\frac{+5\pm\sqrt[]{1}}{2} \\ x=(+5\pm1)/(2) \\ x_1=(5+1)/(2)=(6)/(2)=3 \\ x_2=(5-1)/(2)=(4)/(2)=2 \end{gathered}

so, we have 2 values for x ( 2 and 3)

Step 2

now, find the images

a) when x= 3


\begin{gathered} f(x)=x^2-5x+3 \\ f(x)=(3)^2-5(3)+3 \\ f(x)=9-15+3 \\ f(x)=-3 \end{gathered}

b) when x= 2


\begin{gathered} f(x)=x^2-5x+3 \\ f(x)=2^2-5\cdot2+3 \\ f(x)=4-10+3 \\ f(x)=-3 \end{gathered}

therefore the solutions are


\begin{gathered} (2,-3)\text{ ;(3,-3)} \\ \end{gathered}

I hope this helps you

User Pranoti
by
3.2k points