If the function is known to be an increasing function, we can make some comparisons:

Let's calculate the estimates using the provided values of the function for three equal subintervals:
(a) Estimate
using three equal subintervals with right endpoints
:
![\[ R_3 = f(4) \cdot \Delta x + f(7) \cdot \Delta x + f(9) \cdot \Delta x \]where \( \Delta x \) is the width of each subinterval, which is \( (9 - 3)/(3) = 2 \).\\R_3 = (-2.1) \cdot 2 + (0.9) \cdot 2 + (1.9) \cdot 2 \]\\R_3 = -4.2 + 1.8 + 3.8 \]\\R_3 = 1.4 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/goskam9qde3tvwalfkvjnho9ln1wd5atcn.png)
(b) Estimate
using three equal subintervals with left endpoints
:
![\[ L_3 = f(3) \cdot \Delta x + f(6) \cdot \Delta x + f(9) \cdot \Delta x \]\\L_3 = (-3.3) \cdot 2 + (0.2) \cdot 2 + (1.9) \cdot 2 \]\\L_3 = -6.6 + 0.4 + 3.8 \]\\ L_3 = -2.4 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/84so3q6suxevjhejhjc8uqa1ouirctez1e.png)
(c) Estimate \( \int_{3}^{9} f(x) \,dx \) using three equal subintervals with midpoints (\(M_3\)):
![M_3 = f(3.5) \cdot \Delta x + f(6.5) \cdot \Delta x + f(8.5) \cdot \Delta x \]\\M_3 = (-2.1) \cdot 2 + (0.2) \cdot 2 + (1.3) \cdot 2 \]\\M_3 = -4.2 + 0.4 + 2.6 \]\\M_3 = -1.2 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/9cz0s7a4d7eie5rq07muri4pq1pkx4zvni.png)
If the function is known to be an increasing function, we can make some comparisons:

Therefore, according to the estimates, the right endpoint estimate
is greater than the left endpoint estimate
, and the midpoint estimate (\(M_3\)) is less than the right endpoint estimate
and the left endpoint estimate
.