Answer:
x = 28°
m∠ACD = 68°
Explanation:
From inspection of the given diagram:
- m∠FDC = 124°
- m∠EAB = 2x
- m∠ACG = 4x
Vertical Angle Theorem
When two straight lines intersect, the vertical angles are congruent.
⇒ m∠DAC = m∠EAB = 2x
Angles on a straight line sum to 180°:
⇒ m∠ACD + 4x = 180°
⇒ m∠ACD + 4x - 4x = 180° - 4x
⇒ m∠ACD = 180° - 4x
Exterior Angle Theorem
The exterior angle of a triangle is equal to the sum of the two non-adjacent interior angles of the triangle.
⇒ m∠DAC + m∠ACD = m∠FDC
⇒ 2x + (180° - 4x) = 124°
⇒ -2x + 180° = 124°
⇒ -2x + 180° - 180° = 124° - 180°
⇒ -2x = -56°
⇒ -2x ÷ -2 = -56° ÷ -2
⇒ x = 28°
To find m∠ACD, substitute the found value of x into the expression for the angle:
⇒ m∠ACD = 180° - 4x
⇒ m∠ACD = 180° - 4(28°)
⇒ m∠ACD = 180° - 112°
⇒ m∠ACD = 68°